
Karlsruher Institut für Technologie Institut für Theorie

der Kondensierten Materie

Theorie der Kondensierten Materie II SS 2015

Prof. Dr. A. Shnirman Blatt 1

Dr. B. Narozhny Lösungen

1. Scattering Amplitude:

The scattering state

ψ�k(�r) = ei
�k�r + χ�k(�r), χ�k(�r) = f(�k, k�n)

eik|�r|

|�r| ,

can be found from the Green’s function formalism as follows.

First, one can write down the Schrödinger equation describing a particle moving in a
given potential V (�r) in the momentum representation with the help of the single-particle
Green’s function: [

Ĝ−1
0 − V̂

]
ψ�k(�r) = 0.

Recall, that in the momentum representation the free-particle Green’s function is

Ĝ0 =
1

ε− �p 2/(2m) + iδ
,

while the potential V̂ is actually an (integral) operator.

Substituting the above scattering wave function and noticing that the plane wave is a
solution of the Schrödinger equation for a free particle, one finds

[
Ĝ−1

0 − V̂
]
χ�k(�r) = V̂ ei

�k�r = V̂ |�k〉.

The solution can be formally written don using the “full” Green’s function

Ĝ−1 = Ĝ−1
0 − V̂ ⇒ χ�k(�r) = 〈�r|ĜV̂ |�k〉.

Now, we can expand the Green’s function into a power series

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ0 + . . .

This allows us to write the solution for χ�k(�r) as

χ�k(�r) = 〈�r|Ĝ0V̂ + Ĝ0V̂ Ĝ0V̂ + . . . |�k〉 = 〈�r|Ĝ0F̂ |�k〉,

where
F̂ = V̂ + V̂ Ĝ0V̂ + . . .

This series can be pictorially represented by the diagrams shown in the original figure.



To relate the quantity F̂ to the scattering amplitude, consider the following expression
for the free-particle Green’s function (ε = k2/(2m))

G0(ε;�r, �r
′) =

∫
d3p

(2π)3
ei�p(�r−�r ′)

ε− �p 2/(2m) + iδ
= −m

2π

eik|�r−�r ′|

|�r − �r ′| .

Now we are going to consider this Green’s functions “at large distances”. The meaning
of this phrase is the following. We choose the coordinate system in such a way that
the scattering center is located near the origin, while the vector �r points towards the
observation point. The vector �r ′ spans the area around the origin, where the potential
V (�r ′) is nonzero (in a scattering problem we are looking at a potential that is confined
to a certain area and study how particles – or waves – arriving from infinity scatter off
this potential). Now we denote the length of the vector �r by R and assume all other
lengths in the problem to be much smaller:

�r = R�n, |�r − �r ′| ≈ R− |�r ′| cos θ +O(1/R), cos θ =
�n · �r ′

r′
,

where θ is the angle between �n and �r ′.

Substituting the above approximation into the single-particle Green’s function, we find

χ�k(�r) = −meikR

2πR

∫
d3r′e−ik|�r ′| cos θ〈�r ′|F̂ |�k〉.

Comparing this expression with the definition of the scattering amplitude, we find the
relation

f(�k1, �k2) = −m

2π
〈�k2|F̂ |�k1〉,

where
�k2 =

∣∣∣�k1
∣∣∣�n.

Let us now derive the integral equation for the scattering amplitude. We re-write the
series expantion for F̂ in the momentum representation:

F̂ = V̂ + V̂ Ĝ0V̂ + . . . ⇒ F (�k1, �k2) = F (1)(�k1, �k2) + F (2)(�k1, �k2) + . . .

F (1)(�k1, �k2) = V (�k2 − �k1),

F (2)(�k1, �k2) =

∫
d3q

V (�k2 − �q)V (�q − �k1)

ε− q2/(2m) + iδ
.

Now we can see, that in the series of diagrams in the figure the straight lines correspond
to free-particle Green’s functions and the curvy lines – to the matrix elements of the
scattering potential. All internal momenta should be integrated over, while the incoming
and outgoing momenta should be “on shell”, i.e. should satisfy ε = k2/(2m).

The integral equation for F̂ can be easily expressed either diagrammatically, or in the
operator form:

F̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + · · · = V̂ + V̂ Ĝ0(V̂ + V̂ Ĝ0V̂ + . . . ) = V̂ + V̂ Ĝ0F̂ .



In the momentum representation the integral equation has the form

F (�k1, �k2) = V (�k2 − �k1) + 2m

∫
d3q

(2π)3
V (�k2 − �q)F (�k1, �q)

ε− q2/(2m) + iδ
.

2. Second quantization:

See the attached problems and their solutions.
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U±(x) = W 2
0 ∓ αδ(x), α =

√
2

m
�W0,

and the existence of the zero-energy state is connected to the presence of a single
discrete level in a δ-well; see Problem 2.7.

10.3 The simplest systems with a large number of particles
(N � 1)

Problem 10.28

For the ground state of a Bose-gas consisting of N identical non-interacting particles
with the spin s = 0 in a volume V , calculate the mean particle number density, the
mean number of particles in a volume v, and the fluctuation of this particle number.

Solve this problem by averaging the physical operators in the occupation-number
representation.

Solution

Expressing ψ(r)-operators in terms of creators â+k and annihilators âk of a particle with

a given momentum p = �k, the operator for particle number density n̂(r) = ψ̂+(r)ψ̂(r)

(see Problem 10.22) (here ψ̂(r) =
∑
k

(1/
√
V )eik·râk) becomes

n̂(r) =
1

V

∑
k1k2

ei(k2−k1)râ+k1 âk2 . (1)

The mean particle number density n(r) is obtained from operator (1) by averaging
over the ground state |ψ0〉 = |Nk=00k �=0〉 (all the particles have zero momentum p = 0).
Since

〈ψ0|â+k1 âk2 |ψ0〉 =
{
N, k1 = k2 = 0,
0, in all other cases,

we have the natural result n = N/V .

The mean particle number in the volume v is obtained by averaging the operator
N̂(v) =

∫
v

n̂(r)d3r, and is equal to N(v) = Nv/V .

To calculate the fluctuations of particle number, we first average the operatorN2(v)
over the state |ψ0〉. Since

N2(v) =
1

V 2

∫
v

∫
v

∑
k1k2k3k4

exp{i[(k2 − k1) · r+ (k4 − k3) · r′]}â+k1 âk2 â+k3 âk4 d3rd3r′,
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we must first find the matrix elements

〈ψ0|â+k1 âk2 â+k3 âk4 |ψ0〉

to calculate N2(v). Using the explicit form of |ψ0〉, we see that the matrix elements are
non-vanishing only when conditions k1 = k4 = 0, k2 = k3 are fulfilled. These elements
are equal to N2 for k2 = k3 = 0 and to N for k2 = k3 ≡ k 	= 0. Taking this into
account we obtain

N2(v) =
1

V 2

∫
v

∫
v

⎧⎨
⎩N2 +N

∑
k �=0

eik·(r−r′)

⎫⎬
⎭ d3r d3r′. (2)

Because the functions ψk = eik·r/
√
V form a complete set, the sum here is equal to

V δ(r− r′)− 1, and integration gives

N2(v) =

(
Nv

V

)2

+
Nv

V
− Nv2

V 2
. (3)

Hence

(ΔN(v))2 = N2(v)−N(v)
2
=

Nv

V

(
1− v

V

)
. (4)

For v = V we have (ΔN(v))2 = 0, which is obvious, since the total number of particle
in the system is equal to N and does not fluctuate. When v 
 V , according to (4),
we have

(ΔN(v))2 ≈ Nv

V
= N(v).

Let us note that for a system of N non-interacting classical particles in a volume V ,
the distribution of the number of particles Nv in the volume v has the form

W (Nv) =
N !

Nv!(N −Nv)!

( v

V

)Nv
(
1− v

V

)N−Nv

(binomial distribution). For such a distribution, the calculation of mean values Nv,
N2

v , (ΔNv)2 gives results that coincide with those obtained above (see also a remark
in the next problem).

Problem 10.29

Under the same conditions as in the previous problem, consider the spatial correlation
of density fluctuations. For a homogeneous system it is characterized by a correlation
function ν(r) (r = r1 − r2) equal to

ν(r) =
n1n2 − n2

n
, n1,2 ≡ n(r1,2),
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where n is the mean particle number density.

Compare this result to the corresponding result for a system of classical particles.

Solution

Since particle density operators in different points of space commute with each other,
the operator of the form n̂1n̂2 can be written:

n̂1n̂2 = ψ̂+(r1)ψ̂(r1)ψ̂
+(r2)ψ̂(r2)

=
1

V 2

∑
k1k2k3k4

exp{i[(k2 − k1)r1 + (k4 − k3)r2]}â+k1 âk2 â+k3 âk4 ,

and its mean value in the Bose-gas ground state is

n1n2 =
1

V 2

⎧⎨
⎩N2 +N

∑
k �=0

eik(r1−r2)

⎫⎬
⎭ =

N

V
δ(r1 − r2) +

N2

V 2
− N

V 2
. (1)

Compare this to the derivation of Eqs. (2) and (3) in the previous problem. Hence[223]

1

n
{n1n2 − n2} = δ(r)− n

N
,

and the correlation function becomes equal to

ν = − n

N
. (2)

In order to understand the results obtained, we derive correlators similar to (1), (2)
for the case of non-interacting classical particles. Taking into account the fact that
the probability distribution of particle coordinates is described in terms of a product
d3ra/V and n(r) =

∑
a
δ(r− ra), we find

n(r′1)n(r
′
2) =

∫
. . .

∫ ∑
a,b

δ(r′1 − ra)δ(r
′
2 − rb)

d3r1
V

. . .
d3rN
V

=
N

V
δ(r′1 − r′2) +

N(N − 1)

V 2
, (3)

which coincides with Eq. (1). (Note that the term with a δ-function in (3) corresponds
to the terms with a = b. The number of such terms is N . The second term corresponds
to the terms with a 	= b, and their number is N(N − 1).)

For macroscopic systems, the value of N is extremely large, and therefore the last
term in (1) can be omitted and we have ν = 0 (there is no correlation) in (2). On the
other hand, for finite values of N we have ν 	= 0. Here the characteristic properties
of ν – its independence from r and its sign ν < 0 – have an intuitive explanation for

[223] The term with the δ-function, that goes to zero as r �= 0, has a universal character and does not
depend on the form of the distribution function.
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classical particles. Indeed, the value of n1n2 is lower than n2, since a single particle
cannot contribute to the particle number density at different points of space at the
same time, regardless of the distance between them (in the case where N � 1 the
density at different points in space is determined mainly by the contribution of different
particles).

Many characteristics of a Bose-gas in the ground state, considered here and in the
previous problem, are the same as for a gas of classical particles. It is not accidental.
Indeed, the wavefunction of the ground state for the Bose gas has the form

Ψ0 = ψ0(r1)ψ0(r2) . . . ψ0(rN ), ψ0(r) =
1√
V
,

i.e., is a product of single-particle wavefunctions. This is similar to a gas of distinguish-
able particles. The particles therefore do not interfere with each other, and for each
one of them |ψ0|2 = 1/V , which corresponds to a constant probability distribution
over the volume.

Problem 10.30

In the ground state of an ideal Fermi-gas of N particles in volume V , find the mean
particle number density and the mean particle number in some volume v.

This problem should be solved by averaging the physical operators in the
occupation-number representation.

Solution

The particle density operator n̂(r) has the form

n̂(r) =
∑
σ

n̂(r, σ) =
1

V

∑
σ

∑
k1k2

ei(k2−k1)râ+k1σ âk2σ . (1)

Compare to Problem 10.28 and 10.22, σ ≡ sz. The ground state of the Fermi-gas
is determined by occupation numbers nkσ, equal to 1 for |k| < kF and 0 for |k| > kF ,
so that

|ψ0〉 =
∏

â+kσ|0〉, (2)

where the product includes operators â+kσ with quantum numbers (kσ) of occupied
states. Here the Fermi momentum, pF = �kF , is found from the condition

∑
σ

∑
k(k<kF )

1 = (2s+ 1)

∫
k<kF

V d3k

(2π)3
=

(2s+ 1)V k3F
6π2

= N,
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i.e., we have

kF =

[
6π2N

(2s+ 1)V

]1/3
.

Since we see that the matrix element 〈ψ0|â+k1σâk2σ|ψ0〉 is different from zero (and equal
to 1) only for k1 = k2 ≡ k, and |k| ≤ kF , from Eqs. (1) and (2) we obtain

n = 〈ψ0|n̂(r)|ψ0〉 = N

V

(which is expected), and n(σ) = n/(2s+ 1), while N(v) = nv = Nv/V .

Problem 10.31

Under the conditions of the previous problem, consider the correlation of particle
number densities with definite values of spin z-projection at different points in space:
find n(r1, sz1)n(r2, sz2), and compare to the product n(r1, sz1) · n(r2, sz2). Consider
the cases of different and identical values of sz1 and sz2.

Find the density-density correlation function (see Problem 10.29).

Solution

The operator n(r1, σ1)n(r2, σ2) has the form

n̂(ξ1)n̂(ξ2) =
1

V

∑
{k}

exp{i[(k2 − k1)r1 + (k4 − k3)r2]}â+k1σ1 âk2σ1 â+k3σ2 âk4σ2 . (1)

(Compare to Problems 10.29 and 10.30). Letting |ψ0〉 be the wavefunction of the
Fermi-gas ground state given in the previous problem, it is easy to see that the matrix
element obtained by averaging

〈ψ0|â+k1σ1 âk2σ1 â+k3σ2 âk4σ2 |ψ0〉,
for the case σ1 	= σ2, is different from zero (and equal to 1) only for k1 = k2, k3 = k4
and |k1,3| ≤ kF . Taking this into account, for σ1 	= σ2 we find

〈ψ0|n̂(ξ1)n̂(ξ2)|ψ0〉 = 1

V 2

∑
|k1,2|≤kF

1 =
n2

(2s+ 1)2
, n =

N

V
. (3)

(For the calculation of the sum over k1,2, see the previous problem.) Since n(σ) =
n/(2s+ 1), the result (3) means that n1n2 = n1 · n2, i.e, in the case of different values
of the spin projections σ1 	= σ2 there is no correlation between the particle densities
at different points in space.

In the case of σ1 = σ2, the situation is different. Now the matrix element (2) is
different from zero and equal to 1 in the following cases:
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1) k1 = k2, |k2| ≤ kF , k3 = k4, |k4| ≤ kF ;

2) k1 = k4, |k4| ≤ kF , k2 = k3, |k3| > kF .

Using this fact, we find

n(r1, σ)n(r2, σ) =
1

V 2

⎧⎨
⎩

∑
|k1,2|≤kF

1 +
∑

|k1|≤kF

∑
|k2|≥kF

ei(k2−k1)(r1−r2)

⎫⎬
⎭. (4)

Then, using the relation

1

V

∑
|k|≥kF

eik·r =
1

V

⎧⎨
⎩
∑
k

eik·r −
∑

|k|<kF

eik·r

⎫⎬
⎭ = δ(r)− 1

V

∑
|k|<kF

eik·r

and calculating the integral (in spherical coordinates with the polar axis directed along
the vector r) we obtain:

1

V

∑
|k|≤kF

eik·r =
V

(2π)3

∫
k≤kF

eik·r d3k =
V

2π2r2

{
sin kF r

r
− kF cos kF r

}
,

We transform (4) using (r = r1 − r2, n(σ) = n/(2s+ 1)):

n(r1, σ)n(r2, σ) = n(σ)2 − 1

4π4r4

{
sin kF r

r
− kF cos kF r

}2

.

Hence we obtain the correlation function:

ν(r, σ) = − [sin kF r − kF r cos kF r]
2

4π4n(σ)r6
. (5)

Let us discuss this result. The character of the particle density correlations can be
made physically clear. Identical particles with different values of spin projection behave
like distinguishable ones, so there is no correlation between them. The sign of the
correlation function ν(r, σ) < 0 in the case of the same spin projections is also natural.
It shows the “repulsive” character of the fermion exchange interaction. For the values
r = |r1 − r2| → ∞, the correlation disappears.

In conclusion, we should note that the full correlation function for particle number
density ν(r) coincides (independent of the spin projection) with ν(r, σ).

Problem 10.32

Considering the interaction between particles as a perturbation, find the ground state
energy of the Bose-gas (consisting of N spinless particles in volume V ) in the first
order of the perturbation theory (the interaction between particles is described by a
short-range repulsive potential U(r) ≥ 0, r = ra − rb).


