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1. Shallow well:

A “shallow well” is a potential well with the depth U0 � ~2/(2ma2), where
a is the width (or radius) of the well. In such a potential, the energy of a
bound state is much smaller than the well depth U0, while its wave function
extends over distances much greater than the well radius a.

Consider a shallow well in a D-dimensional space and find out in which case
do the bound states exist.

(a) Show, that the energy of each bound state corresponds to a pole of the

scattering amplitude F (~k1, ~k2) as a function of energy.

In the previous exercise we have derived the following series for the scattering am-
plitude

F (~k1, ~k2) = V + V G0V + V G0V G0V + . . .

Both V and G0 should be understood as matrices in ~k space. Since in the ~r space
V (~r1, ~r2) = V (~r1)δ(~r1 − r2) we obtain for the ~k space

V (~k1, ~k2) =

∫
d~r1d~r2V (~r1 − ~r2)e−i

~k1~r1+i~k2~r2 = V (~k1 − ~k2) .

For the (retarded) Green’s function we have

G0(ε,~k1, ~k2) = (2π)Dδ(~k1 − ~k2)G0(ε,~k1) = (2π)Dδ(~k1 − ~k2)
1

ε− εk1 + iδ
.

Here εk ≡ ~2k2/2m. Thus, formally, F is also a function of frequency

F (ε,~k1, ~k2) = V (~k1 − ~k2) +

∫
dDq

(2π)D
V (~k1 − q)G0(ε, ~q)V (~q − ~k2) + . . . .

In the previous exercise we considered the scattering states and we had to take the
on-shell solution

F (~k, k~n) = F (ε = εk, ~k, k~n) .

Now we consider ε as independent.

The expansion for the full Green’s function can be written as follows

G = G0 +G0V G0 +G0V G0V G0 + · · · = G0 +G0FG0 .

Poles of G(ε,~k1, ~k2) as a function of ε correspond to the eigenstates of the problem.
Thus, if F would have a pole at negative ε this would mean an bound state.



(b) Show, that bound states in shallow wells exist only for D 6 2.

The series for F can be rewritten as follows

F = V + V G0V + V G0V G0V + · · · = V + V G0F .

This gives

F (ε,~k1, ~k2) = V (~k1 − ~k2) +

∫
dDq

(2π)D
V (~k1 − q)G0(ε, ~q)F (ε, ~q,~k2) .

For V (~r) approximated as V (~r) = −aDU0δ(~r) we obtain

V (~q) =

∫
dDre−i~q~rV (~r) = −aDU0 .

Thus

F (ε,~k1, ~k2) = −aDU0 − aDU0

∫
dDq

(2π)D
G0(ε, ~q)F (ε, ~q,~k2) .

This equation can only be consistent if F is independent of both ~k1 and ~k2. This
gives

F (ε) = −aDU0 − aDU0F (ε)

∫
dDq

(2π)D
G0(ε, ~q) .

and

F (ε) =
−aDU0

1 + aDU0

∫
dDq
(2π)D

G0(ε, ~q)
.

1) For D = 1 we obtain∫
dDq

(2π)D
G0(ε, ~q) =

∫
dq

2π

1

ε− ~2q2
2m

+ i0
= −2m

~2

∫
dq

2π

1

q2 + χ2
,

where χ2 ≡ −2m(ε + i0)/~2. Since we are interested in ε < 0, we have χ2 > 0 and
we can safely drop i0. Thus,∫

dq

2π

1

ε− ~2q2
2m

+ i0
= −2m

~2

∫
dq

2π

1

q2 + χ2
= − m

~2χ
,

F (ε) =
−aU0

1− aU0m
~2χ

=
−aU0

1− aU0m
~
√
−2mε

.

The pole is at

ε = −ma
2U2

0

2~2
. (1)

2) For D = 2 we obtain∫
dDq

(2π)D
G0(ε, ~q) = −2m

~2

∫
qdq

2π

1

q2 + χ2
.

The integral is logarithmically divergent. We must regularise it by noting that the
approximation V (~q) = −aDU0 is only valid for q < 1/a. For q > 1/a the potential
V (~q) vanishes rapidly. Thus∫

dDq

(2π)D
G0(ε, ~q) = −2m

~2

∫ 1/a

0

qdq

2π

1

q2 + χ2
≈ m

π~2
ln(aχ) . (2)



Finally,

F (ε) =
−a2U0

1 + a2U0m
π~2 ln(aχ)

.

The pole is at

ε = − ~2

2ma2
e−

2a2U0m

π~2 .

Of course the coefficient in the exponent could be multiplied by O(1) since the
integral in (2) is only an estimate.

3) For D = 3 we obtain∫
dDq

(2π)D
G0(ε, ~q) = −2m

~2

∫
q2dq

2π2

1

q2 + χ2
.

This integral behaves regularly at χ→ 0 and we can estimate

I3(ε) ≡
∣∣∣∣∫ dDq

(2π)D
G0(ε, ~q)

∣∣∣∣ =
2m

~2

∫ 1/a

0

q2dq

2π2

1

q2 + χ2
≤ m

π2~2a
.

Thus,

F (ε) =
−a3U0

1− a3U0I3(ε)
.

We obtain

a3U0I3(ε) ≤
ma2U0

π2~2
� 1 .

Thus there is no pole.

(c) Compare the results with the standard quantum-mechanical expressions.

The result (1) coincides with the known quantum mechanical result.

2. Fermionic Green’s functions

(a) Express the particle and current densities of a Fermi gas in terms of its
single-particle Green’s function.

The Green’s function is defined as

iG(r1, t1, r2, t2) = 〈|TΨ(r1, t1)Ψ
†(r2, t2)|〉 .

The electron density is defined via

n(r, t) = 〈|Ψ†(r, t)Ψ(r, t)|〉

Thus
n(r, t) = −i lim

r′→r,t′→t+0
G(r, t; r′, t′) .

Note, that t′ must necessarily be later than t so that the T operator changes the
order of Ψ and Ψ†.

The (probability) current density is defined as

~j(r, t) = − i~
2m
〈|Ψ†(r, t)(~∇Ψ(r, t))− (~∇Ψ†(r, t))Ψ(r, t)|〉

This corresponds to

~j(r, t) = − ~
2m

lim
r′→r,t′→t+0

(~∇r − ~∇r′)G(r, t; r′, t′) .



(b) For a free Fermi gas use the expression for the particle density to derive
the relation between the density n and the Fermi momentum pF . Consider
the cases of three- and two-dimensional gases.

We use
n(r, t) = −i lim

r′→r,t′→t+0
G(r, t; r′, t′) .

For the free Fermi gas G(r, t, t′, t′) = G0(r − r′, t− t′), thus

n = −iG0(r = 0,−τ)|τ→+0 .

We obtain

n = −i
∫

dDq

(2π)D

∫
dε

2π
eiετ

1

ε−
(

~2q2
2m
− µ

)
+ i0 sign ε

Since τ > 0 the integral over ε should be closed in the upper half-plane. Then the
integral gives i only is ~2q2/(2m)− µ < 0. We obtain

n =

∫
dDq

(2π)D
θ

(
µ− ~2q2

2m

)
For D = 3 we obtain

n =

∫ qF

0

q2dq

2π2
=

q3F
6π2

,

where qF =
√

2mEF/~2 and EF = µ. We should also take into account the spin
degeneracy, thus n = 2× q3F/(6π2).

For D = 2 we obtain

n =

∫ qF

0

qdq

2π
=
q2F
4π

.

Taking into account spin n = 2× q2F/(4π).

For D = 1 we obtain

n =

∫ qF

0

dq

π
=
qF
π
.

Taking into account spin n = 2× qF/π.

3. Friedel oscillations

(a) For free fermions in a one-dimensional space (i.e., moving on a line) find
the explicit expression for the Green’s function Gαβ(ε;x, x′).

In Fourier representation

Gαβ(ε, q) =
δαβ

ε−
(
q2

2m
− µ

)
+ i0 sign ε

Then

Gαβ(ε, x− x′) =

∫
dq

2π

δαβ e
iq(x−x′)

ε−
(

~2q2
2m
− µ

)
+ i0 sign ε

.



Gαβ(ε, x− x′) = −2m

~2

∫
dq

2π

δαβ e
iq(x−x′)

q2 − 2m
~2 (µ+ ε)− i0 sign ε

. (3)

It is sufficient to perform the calculation for x > x′, since G(ε, x, x′) = G(ε, x′, x).
Then we close the contour of integration over q in the upper half-plane. The possible
poles are

q± = ±
√

2m

~2
(µ+ ε) + i0 sign ε .

One of these poles is necessarily in the upper half-plane. For example if µ + ε > 0
and ε > 0 it is q+. Then

Gαβ(ε, x− x′) = −im
~2
δαβ e

iq+|x−x′|

q+
.

(b) Repeat the calculation for the half-line x > 0 with the hard-wall boundary
condition ψ(x = 0) = 0.

The easiest way to solve the problem is to realise that the combination

Ghw(ε, x, x′) = G(ε, x, x′)−G(ε, x,−x′)

satisfies the boundary condition. This resembles the image charge method in elec-
trostatics.

Another option is to realise that the exponential factor eiq(x−x
′) corresponds to the

product of two normalised plane waves (eiqx/
√
L)(eiqx

′
/
√
L)∗ (the factors of 1/

√
L

are then absorbed by the integration over q). In the new situation the normalised
wave functions are

√
2 sin(qnx)/

√
L with qn = nπ/L and n > 0. Then

Gαβ(ε, x− x′) =
∑
n

δαβ (2/L) sin(qnx) sin(qnx
′)

ε−
(

~2q2
2m
− µ

)
+ i0 sign ε

.

Gαβ(ε, x− x′) =

∫ ∞
0

2dq

π

δαβ sin(qx) sin(qx′)

ε−
(

~2q2
2m
− µ

)
+ i0 sign ε

.

or

Gαβ(ε, x− x′) =

∫ ∞
−∞

dq

π

δαβ sin(qx) sin(qx′)

ε−
(

~2q2
2m
− µ

)
+ i0 sign ε

.

This confirms the ”image charge” methods.

(c) In the latter case, show that the fermion density n(x) oscillates as a
function of the distance x from the boundary (the so-called Friedel oscil-
lations). What is the period of the oscillations? Plot the resulting density
n(x).

For the density we obtain then

n(x) = 2×
∫ ∞
0

2dq

π
θ

(
µ− ~2q2

2m

)
sin2(qx) .

n(x) =
4

π

∫ qF

0

sin2(qx) =
2

π

(
qF −

sin(2qFx)

2x

)
.


