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1. Shallow well:

A “shallow well” is a potential well with the depth U, < h*/(2ma?), where
a is the width (or radius) of the well. In such a potential, the energy of a
bound state is much smaller than the well depth U,, while its wave function
extends over distances much greater than the well radius a.

Consider a shallow well in a D-dimensional space and find out in which case
do the bound states exist.

(a) Show, that the energy of each bound state corresponds to a pole of the
scattering amplitude F'(k;, k2) as a function of energy.

In the previous exercise we have derived the following series for the scattering am-
plitude o
F(ky, ko) =V + VGV + VG VGV + ...

Both V' and Gy should be understood as matrices in k space. Since in the 7 space
V (7, 79) = V(71)d(7 — r2) we obtain for the k space

V (K, ko) = / A iV (Fy — )e~Fimtikre — v — k) .

For the (retarded) Green’s function we have

1

GQ(E, El, EQ) = (QW)Dé(El — EQ)G()(E, El) = (27T)D(5(E1 — Eg)m .

Here €, = h%k?/2m. Thus, formally, F is also a function of frequency

dPq

" 1= GV (T =)+

F(G, El, EQ) = V(El - lgg) + /

In the previous exercise we considered the scattering states and we had to take the
on-shell solution . .
F(k, ki) = F(e = e, k, ki) .

Now we consider € as independent.

The expansion for the full Green’s function can be written as follows
G=Go+G\VGy+ G\VGVGy+ -+ =Gy + GoFGy .

Poles of G (e, El, Ez) as a function of € correspond to the eigenstates of the problem.
Thus, if F would have a pole at negative € this would mean an bound state.



(b) Show, that bound states in shallow wells exist only for D < 2.
The series for F' can be rewritten as follows

F=V+VG)WV +VGVG)V +--- =V +VGF .

This gives

F(Q El, E2) = V(El - /Zz) + / ﬁv(a - Q)GO(QQ)F(E;@ Ez) .

For V() approximated as V (7) = —a”Uyd(F) we obtain

V(@) = / Pre= TV (7) = —aPUy .

Thus
dD
(2m)P

This equation can only be consistent if F' is independent of both k:l and EQ. This

F(e, E17E2) = —a"Up — CLDUO/ GO(6 QF (e, q, k’z) :

gives
F(e) = —a”U, —aDUF(e)/ﬂG (€,9)
and DU
Fle) = —
1+ aPU f Gole, )
1) For D = 1 we obtain
/ 7= / 2m dq 1
6 — —_—
(2n ! q+o Wi
where x? = —2m(e + i0)/h%. Since we are interested in € < 0, we have x? > 0 and
we can safely drop 0. Thus,
dq 1 _ 2m [ dq 1 om
2me— T 40 R 2m X2 R
Flo= %o __ _ —alh
1 — alom 1 — —abom
h2x hy/—2me
The pole is at
ma*Ug

2) For D = 2 we obtain
/ dPq Gole ) = — qdq 1
(2mp 1 2 AP

The integral is logarithmically divergent. We must regularise it by noting that the
approximation V(§) = —aPUj is only valid for ¢ < 1/a. For ¢ > 1/a the potential
V(q) vanishes rapidly. Thus

dPq om (Yqdg 1 m
/(2%)DG0(67® TR 0 2T @+ 2 = In(ax) - (2)




Finally,

—CL2U0
F(€> = a2U0m °
1+ 59" In(ay)
The pole is at
h2 _2a2U0m
€ = — (& wh2

2ma?
Of course the coefficient in the exponent could be multiplied by O(1) since the
integral in (2) is only an estimate.
3) For D = 3 we obtain
dPq 2m [ ¢*dg 1
/ 5Go(€,q) = —— 2 2442
(2m) h 22 >+ x

This integral behaves regularly at x — 0 and we can estimate

dPq om [V dg 1 m
I = G = — < )
3(€) /(27‘(‘)D O(E’g)‘ h? /0 212 > +x? T m?h%a
Thus,
—CL3U()
Fle) = ——F— .
<€> 1— CL3U0[3(€)
We obtain o
3 ma~Ug
a U()Ig(E) S W <1.

Thus there is no pole.

(¢c) Compare the results with the standard quantum-mechanical expressions.
The result (1) coincides with the known quantum mechanical result.

2. Fermionic Green’s functions

(a) Express the particle and current densities of a Fermi gas in terms of its
single-particle Green’s function.

The Green’s function is defined as
iG(r1,ty, T, te) = ([T (ry, 1)U (ra, 5)]) .
The electron density is defined via
n(r,t) = (O (r, t)¥(r,1)])

Thus
n(r,t)=—i lim  G(r, ;7" t') .

r’—rt' —t+0
Note, that ¢ must necessarily be later than ¢ so that the T' operator changes the
order of ¥ and W',
The (probability) current density is defined as

—

ih = =
j(’l", t) = _% <|\DT(Ta t) (V\P(h t)) - (V\IJT(’[", t))\I’(T‘, t)|>
This corresponds to
— h = —
J(rt)=—— lim (V,=V,.)G(rt;r't).

2m r’'—r it/ —t+0



(b) For a free Fermi gas use the expression for the particle density to derive
the relation between the density n and the Fermi momentum pz. Consider
the cases of three- and two-dimensional gases.

We use
t) = —1 li tr' ).
n(r, ) ZT’—)T,ltI’r—l>t+0 G(T7 T )
For the free Fermi gas G(r,t,t',t') = Go(r — r',t — t'), thus

n=—iGo(r =0,—7)|r540 -

We obtain

. qu de €T 1
n=—i| o5 | 5-¢ o
(2m) & €— (% - u) + 40 sign €

Since 7 > 0 the integral over € should be closed in the upper half-plane. Then the
integral gives ¢ only is h?¢*/(2m) — u < 0. We obtain

:/(;l:)qﬂ(ﬂ_%)

qr Qd 3
oo [0
0

For D = 3 we obtain

o2 672’

where qp = /2mEr/h? and Er = pu. We should also take into account the spin
degeneracy, thus n = 2 x ¢3./(672).

For D = 2 we obtain )
iﬁ%@_%

n = — ==
o 2m 4rm

Taking into account spin n = 2 x ¢%/(4w).

For D = 1 we obtain
"dg  qr
n= —_ ==
g T

Taking into account spin n = 2 X qg/m.

3. Friedel oscillations

(a) For free fermions in a one-dimensional space (i.e., moving on a line) find
the explicit expression for the Green’s function G,z(e; z, o).

In Fourier representation

dup
Gaﬂ(67q) = 5
€— (;—m — ) + 10 sign e

Then ' )
dq 00 eta(z—a")

Gople,x —12') = :
27 ¢ (% —u) +i0signe




E ig(a—')
Ga5<€,$ = m/ ,36 : (3)
21 ¢* — 53 (pn+€) —i0signe

It is sufficient to perform the calculation for z > ', since G(¢,z,2") = G(e, 2/, z).
Then we close the contour of integration over ¢ in the upper half-plane. The possible
poles are

2m
qr = £ =) —-(p+€) +i0signe .

One of these poles is necessarily in the upper half-plane. For example if y+ ¢ > 0
and € > 0 it is ¢;. Then

Zm6 56“14";3 T ‘

Gople,x —a') = —3 o

Repeat the calculation for the half-line x > 0 with the hard-wall boundary
condition ¢ (z = 0) = 0.
The easiest way to solve the problem is to realise that the combination

Grw(e,z,2") = G(e,x,2") — G(e, z, —1")

satisfies the boundary condition. This resembles the image charge method in elec-
trostatics.

Another option is to realise that the exponential factor /4*~*") corresponds to the
product of two normalised plane waves (' /+/L) (¢ /v/L)* (the factors of 1/v/L
are then absorbed by the integration over ¢). In the new situation the normalised
wave functions are v/2sin(q,z)/v/L with ¢, = nw/L and n > 0. Then

dap (2/L) sin(g,z) sin(g,x")
Go‘ﬁ(e’x_m,) :Z h2q2 o ’
n €—<ﬁ—u>+2081gne

*2dq  bap sin(qz)sin(gz’)
Gaﬁ( — 1‘/> = / Bh2 2 ] ] .
o 7 6—(%—#)4—2051@16

or

Gagle,x —a') = /OO dq 5aﬁ28in(qx) sin(gx’) |
oo T e (f;_gz - M) +10signe
This confirms the ”image charge” methods.

In the latter case, show that the fermion density n(z) oscillates as a
function of the distance = from the boundary (the so-called Friedel oscil-
lations). What is the period of the oscillations? Plot the resulting density
For the density we obtain then

© 94 h? 2
n(x) =2 x /0 7q (u— %) sin®(qx) .
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