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Linked cluster expansion:

Consider the expectation value of the scattering matrix, which appears
in the diagrammatic expansion of the Green’s function 〈0|S|0〉 , where

S = Te−i
∫∞
−∞ dt V0(t) .

Here V0(t) is the interaction Hamiltonian in the interaction representati-
on, V0 = eiH0tV e−iH0t and

V =
1

2

∫
dr1dr2 Ψ†(r1)Ψ

†(r2)V (r1 − r2)Ψ(r2)Ψ(r1) .

(consider for definiteness spineless bosons)

(a) Consider a scenario in which the interaction was switched adiabatically
on around time t− = −T/2 and it is switched adiabatically off around
time t+ = T/2. Both switching on and switching off are performed within
a time interval of order δT . In order to switch on and off adiabatically,
δT must be long enough, but it is still much shorter than T , i.e., δT � T .
Relate the energy of the interacting ground state E to the energy of the
non-interacting ground state E0 via 〈0|S|0〉.

Abbildung 1: Adiabatic switching

We choose t− to be the time just before the switching on starts and t+ is the time
right after the switching out stops (see Fig. 1). Let us split the scattering matrix as
follows:

S = S(+∞,−∞) = S(+∞, t+)S(t+, t−)S(t−,−∞)

In the time period (t−,−∞) there was no interaction, therefore S(t−,−∞) = 1.
The same is valid for the time period (+∞, t+). Thus 〈0|S|0〉 = 〈0|S(t+, t−)|0〉. We
use now

S(t+, t−) = eiH0t+ US(t+, t−) e−iH0t− ,



where US(t+, t−) is the evolution operator in the Schrödinger picture. Thus we
obtain

〈0|S|0〉 = 〈0|US(t+, t−)|0〉 eiE0(t+−t−) .

We cannot calculate 〈0|US(t+, t−)|0〉 exactly, but in the limit δT � T we can argue
that for most of the time period (t+, t−), i.e., for the whole period except δT in
the beginning and δT at the end the system is in the interacting ground state.
Therefore ln〈0|US(t+, t−)|0〉 ≈ −iET . Note that it would not be correct to write
〈0|US(t+, t−)|0〉 ≈ e−iET . Indeed the phase ET can be large, i.e., much larger that
2π. The exponent e−iET is only sensitive to ET mod (2π). Moreover, the phase
acquired during the switching on and out could be also of order or even larger than
2π. Yet, if we would continuously follow after ln〈0|US(t+, t−)|0〉 we would observe
multiple phase windings and the estimate

ln〈0|US(t+, t−)|0〉 ≈ −iET

becomes meaningful. Finally we obtain

ln〈0|S|0〉 ≈ −i(E − E0)T .

(b) Work out, using Wick’s theorem, the diagrams contributing to 〈0|S|0〉 in
the first and in the second order in V0. Classify these into connected and
non-connected diagrams. Find all topologically non-equivalent connec-
ted diagrams. Determine the multiplicity coefficients, i.e., the number of
times these topologically non-equivalent diagrams contribute to 〈0|S|0〉.
There are no disconnected diagrams in the first order. The connected diagrams of
the first order in V0 are shown in Fig. 2. These diagrams are multiplied by 1/p in
addition to the usual factor in(±1)L (L is the number of loops, n = 1 here). The
symmetry factors p are shown in Fig. 2. The symmetry factor should be understood

Abbildung 2: First order connected diagrams

as follows: Each ”pairing” according to Wick’s theorem comes with the coefficient
(2nn!)−1. A naive argument would be to say that one has n! permutations of different
V0’s and 2n permutations of the interaction ”wavy” lines. Thus the total coefficient
in front of each kind of diagram is 1. In the calculation of Green’s function this
argument works. For the diagrams of the expansion of 〈0|S|0〉 this does not work.
The reason is: some permutations lead to exactly the same ”pairing”. These are
the symmetries, i.e., the transformations of the diagram which lead to exactly the
same diagram. The number of such transformations is denoted by p. The factor 2nn!
should be, thus, reduced by p. As a result, each topologically unique diagram comes
with a factor 1/p. Alternatively one can explicitly count the number of different
pairings leading to each topologically unique diagram. One would see that this
number is 2nn!/p.



The connected diagrams of the second order in V0 are shown in Fig. 3. These
diagrams are multiplied by 1/p in addition to the usual factor in(±1)L (L is the
number of loops, n = 2 here). The symmetry factors p are shown in Fig. 3.

Abbildung 3: Second order connected diagrams

(c) Argue, based on the result of (a), that the non-connected diagrams could
not contribute to ln〈0|S|0〉.
An example of a disconnected diagram is shown in Fig. 4. This diagram clearly
scales as T 2. Generally, the contributions of non-connected diagrams scale as T n,

Abbildung 4: A disconnected diagram of second order

where n > 1 is the number of connected parts. On the other hand, as we have seen
above

ln〈0|S|0〉 ≈ −i(E − E0)T .

Thus, only connected diagrams should contribute to the expansion of ln〈0|S|0〉.
(d) Prove the ”linked cluster theorem”, which states that the following ex-

pansion holds

ln〈0|S|0〉 =
∑
m

Cm ,

where

Cm =
(−i)m

m!

∫
dt1 . . . dtm〈0|TV0(t1) . . . V0(tm)|0〉conn .

The subscript conn means here ”connected”. Thus, Cm is the sum of all
connected diagrams of order m in V0. Determine the multiplicity factors,
with which topologically non-equivalent diagrams contribute to Cm.

Read, e.g., the book by Abrikosov, Gorkov, Dzyaloshinski (Chapter 3 Par. 15). In
the book the proof is done in imaginary time. This is the same in real time.


