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1. Polarons

We consider electrons in the conduction band of a semiconductor. The di-
spersion relation is E(~p) = (~p)2/2m, where m is the effective (band) mass
and the energy is measured from the bottom of the conduction band. The
electronic gas in the conduction band is non-degenerate, i.e., the chemical
potential is in the gap between the valence and the conduction bands, i.e.,
µ < 0.

Consider a situation in which electrons interact only via emission and ab-
sorption of virtual phonons (no direct Coulomb interaction). Effectively this
means that the ”wavy” line in our diagrammatic expansion is now repla-
ced by a phononic line. The latter is proportional to the phonon Green’s
function:

U(ω, ~q) = g2
ω2
0(~q)

ω2 − ω2
0(~q) + i0

. (1)

Only acoustic phonons with the dispersion relation ω0(~q) = c|~q| and |~q| <
qD are taken into account. Here c is the sound velocity, qD is the Debye
momentum, and g is the coupling constant (deformation potential).

(a) Calculate the lowest order contribution to the self-energy of the elec-
trons, Σ(ε, ~p). The resulting Green’s function describes now polarons
(electrons dressed by phonons).

The Feynman diagram corresponding to the lowest order self-energy is shown in
Fig. 1.
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Abbildung 1: Lowest order diagram for self-energy

Using the diagrammatic rules we obtain

Σ(ε,p) = i

∫
ddq

(2π)d
dω

2π
G0(ε− ω,p− q)U(ω,q) ,



where

G0 =
1

ε− εp + i0 sign εp
.

Here εp ≡ E(p)− µ. Since µ < 0, we have εp > 0. Thus,

G0 =
1

ε− εp + i0
.

We obtain

Σ(ε,p) = ig2
∫

ddq

(2π)d
dω

2π

1(
ε− ω −

[
(p−q)2

2m
− µ

]
+ i0

) c2q2

(ω2 − c2q2 + i0)
,

We use
c2q2

(ω2 − c2q2 + i0)
=
cq

2

[
1

ω − cq + i0
− 1

ω + cq − i0

]
, (2)

where q ≡ |q|.
We, first, perform the integration over ω. Only the first term in (2) contributes, as
its pole is on the other side as compared to that of G0. This gives

Σ(ε,p) =
g2

2

∫
ddq

(2π)d
cq(

ε−
[
(p−q)2

2m
− µ

]
− cq + i0

) .

From now one we use d = 3. We use the spherical coordinates for q such that the
angle θ is measured from the direction of p. Then

Σ(ε,p) =
g2

2

∫
q2dq sin θdθ

(2π)2
cq(

ε+ µ−
[
p2

2m
+ q2

2m
+ pq cos θ

m

]
− cq + i0

) .

We introduce x = − cos θ and obtain

Σ(ε,p) =
g2c

8π2

qD∫
0

q3dq

1∫
−1

dx
1(

ε+ µ−
[
p2

2m
+ q2

2m
− pqx

m

]
− cq + i0

) . (3)

(b) From ReΣ(ε, ~p) extract the dispersion relation of the polaron. Find the
binding energy and the effective mass of the polaron. Tip: show that near
the mass shell (ε ≈ E(~p)− µ) and for |~p| � mc the self energy reads

Σ(ε, ~p) = ε0 − α1 (ε+ µ− E(~p))− α2E(~p) .

Near the mass shell (of the bare electron) , i.e., for ε ≈ p2

2m
− µ the denominator of

(3) is given by ≈ (pqx
m
− q2

2m
− cq+ i0). Since q > 0 we conclude that for p� mc the

denominator cannot vanish. Thus, in this regime (ε ≈ p2/(2m) − µ and p � mc)
the self-energy is purely real and we can disregard i0 in (3). The integral over x can
be easily calculated, as it is a logarithmic one:

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq ln

(
ε+ µ− (p−q)2

2m
− cq

ε+ µ− (p+q)2

2m
− cq

)
.



Let us introduce two small parameters: ∆ ≡ ε + µ − p2/(2m) (has dimensions of
energy) and v = p/m (has dimensions of velocity). Then

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq ln

(
q2

2m
+ q(c− v)−∆

q2

2m
+ q(c+ v)−∆

)
.

Let us first consider the situation exactly on-shell, ∆ = 0. Then, since v � c, we
can expand in v/c and obtain

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq

(
− 2qv

q2

2m
+ qc

)
= − g

2c

4π2

qD∫
0

q3dq
q2

2m
+ qc

.

Usually, qD is of order of the inverse lattice constant, i.e., is large. Therefore,
qD/m � c. Thus, we can neglect cq in comparison to q2/(2m) in the most of
the integration domain. This gives

Σ = ε0 ≈ −
g2cmq2D

4π2
.

This is the binding energy of the polaron. That is a polaron with p = 0 has a
negative energy, lower that the bottom of the conduction band. Next, we expand
to the power v3 and reinstall ∆. We obtain

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq

− 2qv
q2

2m
+ qc−∆

− 2(qv)3

3
(
q2

2m
+ qc−∆

)3 + . . .

 .

Next we expand in ∆

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq

− 2qv
q2

2m
+ qc

− 2qv∆(
q2

2m
+ qc

)2 − 2(qv)3

3
(
q2

2m
+ qc

)3 + . . .

 .

We again neglect qc in comparison with q2/(2m). The resulting logarithmic integrals
should be cut off from below at q ≈ mc

Σ(ε,p) =
g2c

8π2

qD∫
mc

dq

(
−4mq − 8m2∆

q
− 16m3v2

3q
. . .

)
.

Thus, we obtain

Σ(ε,p) = ε0 − α1∆− α2
p2

2m
,

where

α1 =
g2m2c

π2
ln
( qD
mc

)
and α2 = (4/3)α1 .

We find the new dispersion relation by solving

∆− Σ(ε,p) = 0 .



This gives

(1 + α1)

(
ε+ µ− p2

2m

)
− ε0 + α2

p2

2m
= 0 ,

and

ε =
p2

2m

(
1− α2

1 + α1

)
− µ+

ε0
1 + α1

.

We obtain the new mass
m∗ =

m

1− α2

1+α1

.

The new mass is higher than the bare mass: the electron is ”dressed by phonons”.

(c) Consider ImΣ(ε, ~p) and find the life-time of a polaron with momentum ~p.

We start again with

Σ(ε,p) =
g2c

8π2

qD∫
0

q3dq

1∫
−1

dx
1(

ε+ µ−
[
p2

2m
+ q2

2m
− pqx

m

]
− cq + i0

) .

This gives

ImΣ = −g
2c

8π

qD∫
0

q3dq

1∫
−1

dx δ

(
ε+ µ−

[
p2

2m
+

q2

2m
− pqx

m

]
− cq

)
.

ImΣ = −g
2cm

4π

qD∫
0

q3dq

1∫
−1

dx δ
(
2m(ε+ µ− cq)−

[
p2 + q2 − 2pqx

])
.

We define y = p2 + q2 − 2pqx. Then

ImΣ = −g
2cm

8πp

qD∫
0

q2dq

(p+q)2∫
(p−q)2

dy δ (y − 2m(ε+ µ− cq)) .

Consider on-shell situation ε + µ = p2/(2m). Then, the argument of the delta-
function can become zero if

(p+ q)2

2m
>

p2

2m
− cq > (p− q)2

2m

(recall that p > 0 and q > 0). With v = p/m this gives

q2

2m
+ qv > −cq > q2

2m
− qv .

The left inequality is automatically fulfilled, whereas the right one gives

q < 2m(v − c) .
Thus, the polaron has a finite life-time only if v > c. In this case we obtain

ImΣ = −g
2cm

8πp

2m(v−c)∫
0

q2dq = −g
2cm3

3πv
(v − c)3 .

This is the inverse life-time of the polaron (with velocity v > c).



2. Fermionic chain (Kitaev model)

Consider spinless fermions on a one-dimensional chain of sites, numbered by an index
n. The Hamiltonian reads H = H0 + V , where

H0 =
∑
n

(
ta†nan+1 + ta†n+1an − µa†nan

)
and

V =
∑
n

(
∆anan+1 + ∆a†n+1a

†
n

)
.

Here t, ∆ and µ are real constants.

(a) Find the Green’s function G0 corresponding to H0. Tip: use the Fourier
representation.

The Fourier transformation yields

H0 =

π∫
−π

dq

2π
εqa
†
qaq, V = i∆

π∫
−π

dq

2π
sin q(a−qaq + a†−qa

†
q),

with
εq = 2t cos q − µ.

The “non-interacting” problem is characterized by the “free” Green’s function

G0(ε, q) =
1

ε− εq + iδsignε
.

(b) Consider the perturbation series for the Green’s function G of the full
problem. Develop the diagrammatic rules. Sum up the series and deter-
mine the dispersion relation of the new excitations.

The interaction potential V corresponds to two vertices in the diagram technique:

The expressions corresponding to the two vertices are 2i∆ sin q and −2i∆ sin q,
respectively.

The perturbative corrections to the Green’s function form the following series:

Notice, that the signs alternate. This follows form the momentum conservation.
Because of this, only “even-order” corrections appear in the series. The elementary
block is represented by the pair of vertices and a pair of Green’s functions.



In terms of this block, the series is a simple geometric progression. This can be
summed up using the standard rule. Thus we find

G(ε, q) =
G0(ε, q)

1 + 4∆2 sin2 qG0(ε, q)G0(−ε,−q)
=

ε+ 2t cos q − µ
ε2 − [(2t cos q − µ)2 + 4∆2 sin2 q] + iδ

.

The poles of the full Green’s function give the excitation spectrum:

ε = ±
√

(2t cos q − µ)2 + 4∆2 sin2 q.

The sign of the imaginary term iδ in G(ε, q) points out that the upper branch of
the spectrum is empty, while the lower branchis fully occupied.

(c) Could the solution be found without perturbation theory?

Since the Hamiltonian is quadratic, one can also use the Bogolyubov trnasformation
known from the theory of superconductivity to solve the problem. This will be
discussed in more detail in one of the next assignments.


