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1. Jordan-Wigner Transformation:

(a) Using the trivial property (0Z,)* = 1, we express the fermion operators in terms of

the Pauli matrices
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Note, that since the products do not contain any Pauli matrices at the site n, the
products commute with o=. Consequently,
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Using explicit form of the Pauli matrices we now find
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and thus we recover the anticommutation relation
ala, + apal = 1.

Similarly,
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For operators belonging to different sites, we can (without loss of generality) consi-
der two sites n; < ny. Then
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For the opposite order of the operators we find
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Now, the remaining commutation we’ll perform explicitly:
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and hence
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proving the anticommutation for fermionic operators on different sites. Other pairs
of operators can be considered in the same fashion.

(b) Consider the product of operators on adjacent sites:
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Now we can use the above relations to transform the terms in the Hamiltonian:

_ [+ - + - — t,1 T T
0- Un+1 - [Jn + O-n} [Un—l—l + O-n—&—l} - _anan—i-l - anan—i-l + anan+1 + anan—i—l

= [aL - an} [@ILH + an+l:| )

(P e L I [N, 5N . T
OnO0nt1 = [an Un] [0n+1 O-n—i—l} - a’nan—i—l ApGnt1 + anan—i—l anln+1

= [a;rz + ay] [@ILH - @n+1] ;

As a result, the Hamiltonian of a generic spin chain takes the form
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2. Bogolyubov transformation:

In the fermionic representation, the quantum Ising model is described by the Hamilto-
nian

H=— Z {Jx [ail — an} [alH_l + an+1} + B [2a;rlan — 1}}
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We will diagonalize the above Hamiltonian in two steps.

Firstly, we perform a Fourier transformation
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For operators on the adjacent sites we find
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Thus, as a result of the Fourier transform, the Hamiltonian takes the form
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Noting the freedom in the choice of the sign of k£, we can re-write the Hamiltonian
as
. [ dk
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The integrand can now be represented in the matrix form (cf. the Nambu notation
in the theory of supercondutivity)
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Now, we need to perform the second step in the diagonalization, namely the rotation
of the basis that diagonalizes the above 2 x 2 matrix. The excitation spectrum is
given by the eigenvalues of the model

By, = \/(Jac cosk + B)2+ J2sin’k = /J2 + B2+ 2J,Bcosk

The obtained spectrum is gapped, in the sense that the minimum value of Ej is
nonzero:

A = min [Ey] = |J, — B|.

This is the minimum energy that’s required to excite the lowest-lying excitation.



The gap vanishes for the special point J, = B. In that case, the problem is described
by a “critical” theory. Indeed, consider a change of variable k = m + ¢ and focus on
small ¢ < 1. Then

Ex — E,=+/(J.— B)?+ J.B¢.
For J, = B we find the linear spectrum of massless particles

EII(JQC = B) = JIQ|

If J, # 0, then the same Fourier transform yields
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This is qualitatively the same problem that can be diagonalized int he same way
with the only important exception: for J, = J, the model is already diagonalized
after the Fourier transform! In this case, no further rotation is needed, there is no
gap in the spectrum, the excitations are the Jordan-Wigner fermions rather than
Bogolyubov quasiparticles. In the spin language this special model is called the XX
model and it’s equivalent to free fermions as we can see from the Fourier transform.
The more general XY model (where J, # J,) can be diagonalized by the Bogolyubov
transformation and belongs to a different “universality class”.



