Karlsruher Institut für Technologie

Institut für Theorie der Kondensierten Materie

(30 Punkte)

Theorie der Kondensierten Materie II SS 2017

PD Dr. B. Narozhny	Blatt 7
M.Sc. M. Bard	Besprechung 16.06.2017

1. Ruderman-Kittel effect at T > 0:

Solve the problem 1 of Blatt 5 at T > 0.

2. Analytic continuation and Matsubara susceptibility (40 + 30 = 70 Punkte)

In the lecture we have introduced the Kubo formula, which gives the linear response function (susceptibility) as

$$\chi_{BA}(t-t') = D_{BA}^R = -i\theta(t-t')\langle [B(t)A(t')]\rangle.$$

Here A is the observable to which the external force f(t) is coupled $(H_f = H + f(t)A)$, whereas B is the observable that is being measured. The operators are in the Heisenberg representation. In the lecture we have defined the susceptibility at T = 0, so that the averaging in the above equation stands for averaging over the ground state. A straightforward generalization is to define the susceptibility at T > 0 by using the thermal averaging instead.

One can introduce also Matsubara susceptibility:

$$\chi^M_{BA}(\tau) = -\langle T_\tau B(\tau) A(0) \rangle,$$

where $\tau \in [-1/T, 1/T]$. The Fourier transform would read

$$\chi^M_{BA}(i\omega_n) = -\frac{1}{2} \int_{-1/T}^{1/T} d\tau \langle T_\tau B(\tau) A(0) \rangle e^{i\omega_n \tau}.$$

Here $\omega_n = 2n\pi T$.

- (a) Prove that $\chi_{BA}(\omega)$ is given by an analytic continuation of $\chi^M_{BA}(i\omega_n)$ from positive discrete frequencies onto the real axis, $i\omega_n \to \omega + i0$.
- (b) Solve the problem 2, Blatt 5 at T > 0.