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1. Scattering in 2D: the logarithm and the renormalization group

(a) Derivative of the scattering amplitude ∂F (ε)/∂ε.

From the last exercise sheet we know the formal expansion of the scattering ampli-
tude F = V +V G0V +V G0V G0V + ... . The only quantity that depends on energy
is the Green’s function G0. If we differentiate F with respect to ε we need to use
the product rule. It is important here to keep the correct order of the operators.
We find:
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Graphically, this can be depicted as follows, where lines with crosses correspond to
the derivatives of the Green’s function.

(b) Summing of the series and derivation of the renormalization group (RG)
equation.

We can now sort all terms according to the occurrence of the position of the deri-
vative. We first collect all terms where the derivative acts on the most left G0 and
add the terms, where the derivative acts on the second G0 and so on:

∂F

∂ε
= V

∂G0

∂ε
[V + V G0V + ...] + V G0V

∂G0

∂ε
[V + V G0V + ...]

+ V G0V G0V
∂G0

∂ε
[V + V G0V + ...] + ...

The square brackets can now be replaced by F :
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This corresponds to the diagram

After computing the derivative of G0, we can write down the equation for the
function F (ε,k1,k2) as an integral equation
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= −
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So far, our calculations were exact.

Consider now the limit of low energies, |ε| � 1/2ma2, where a is the effective
interaction radius of the short-range potential.

Since the scattering amplitude as a function of its momenta varies on the scale
k1,2 ∼ 1/a, we may disregard this dependence in the integral, since the integral
converges already at small momenta q � 1/a. We assume here as well that the
potential is rotationally symmetric such that there is no dependence on the the
direction of the momenta. The integration over q is now elementary and we find
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(c) Solution of the RG equation.

The above equation can be easily solved:

F (ε) = − 2π

m ln(ε/ε0 + i0)
. (1)

Here the constant ε0 < 0 is real and negative. This follows from the fact, that
the scattering amplitude is real for negative energies. To reach this conclusion, one
can write down the perturbation series in the coordinate representation where the
Green’s function has the form

Gε(r) = − m

2πr
eiκr, κ2 = 2mε,

which is real for negative energies.

If the constant ε0 belongs to the low energy region, ε0 < 1/(ma2), then the pole ε =
ε0 has the physical meaning of the bound state. Otherwise, the pole is meaningless,
since it lies beyond the energy region where our approximations are justified.

2. Polarizability of a ground state

(a) Definition of the Green’s function in the momentum representation



From the first exercise sheet we know that we can write down the Green’s function
as G = G0 +G0FG0. The Green’s function in the energy-momentum space can thus
be written as
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+
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The ground state corresponds to the filled bound state with the (negative) energy
ε0. All other states (“scattering states” at positive energies ε = p2/(2m)) are empty.
We shift the empty states to the lower half-plane, hence the imaginary part +i0
in the Green’s function. The pole at ε0 belongs to the scattering amplitude. This
pole we shift to the upper half-plane. The branch point ε = 0 we keep in the lower
half-plane.

If we calculate for example the density [or the dipole moment, see part (b)], we close
the contour in the upper half-plane, which takes into account only the characteristics
of the bound state.

(b) Relation between dipole moment and exact Green’s function.

The dipole moment is given as usual by the first moment of the (effective) charge
distribution
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Here we need to set p2 = p1 after taking the derivative w.r.t. p1. We easily observe
that without an electric field the polarization is zero (∇p1εp1 ∝ p1 ⇒ odd function).

(c) Diagrammatic expansion of the Green’s function in the applied electric
field.

We now add an electric field to our system that distorts the (effective) charge
distribution and leads to a finite polarization. With the help of the Green’s function
G that already incorporates the effects of the short-range potential, we can expand
the Green’s function GW in powers of the electric potential W as GW = G +
GWG+GWGWG+ .... For the Green’s function G we have the equation [see part
(a)] G = G0 +G0FG0. Diagrammatically this looks like



(d) Correction to Green’s function linear in E and the polarizability.

The correction to G linear in E reads δG = GWG. If we know express G with the
help of the scattering amplitude F , we have to evaluate the following 4 diagrams

The electric potential in the momentum space has the form
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The first diagram gives no contribution to P since there are no poles in the upper
half-plane. The second diagram gives a finite contribution:
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The third diagram evaluates to a similar expression; the result reads
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The fourth diagram vanishes because
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For the polarizability, we need the residue of the Green’s function.

The residue of the Green’s function GW can be obtained by plugging ε0 into the
free Green’s function G0 and calculating the residue of F :∑
ω
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The two terms contribute equalle due to symmetry.

The residue of the scattering amplitude can be found as follows
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The polarizability χ measures the amount of polarization for a weak electric field:
P = χE. In this simple example the tensor χ is diagonal. The applied field induces
a polarization in the same direction (here: x-direction). We find
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Pictorially, the polarizability can be represented by

where the Green’s function contains all of the above four terms and the dashed line
corresponds to either ∇δ(r) (in momentum representation) or r (in coordinate re-
presentation). Then the first term in δG vanishes after the integration over energies,
the fourht due to the odd character of r, while the second and third are identical
due to symmetry. All remaining integrals are elementary (we close the contour in
the upper-half plane, such that only the pole at ε0 contributes), the final result
reads

χ =
e2

6mε20
.

Interpretation: A large charge e and a small binding energy ε0 lead to a large po-
larizability. This is not surprising since the electric potential energy is proportional
to the charge and one expects the electron to be more susceptible to perturbations
the weaker it is bound by the short-range potential.


