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1. Polarons

We consider electrons in the conduction band of a semiconductor. The di-
spersion relation is E(~p) = (~p)2/2m, where m is the effective (band) mass
and the energy is measured from the bottom of the conduction band. The
electronic gas in the conduction band is non-degenerate, i.e., the chemical
potential is in the gap between the valence and the conduction bands, i.e.,
µ < 0.

Consider a situation in which electrons interact only via emission and ab-
sorption of virtual phonons (no direct Coulomb interaction). Effectively this
means that the ”wavy” line in our diagrammatic expansion is now repla-
ced by a phononic line. The latter is proportional to the phonon Green’s
function:

U(ω, ~q) = g2
ω2
0(~q)

ω2 − ω2
0(~q) + i0

. (1)

Only acoustic phonons with the dispersion relation ω0(~q) = c|~q| and |~q| <
qD are taken into account. Here c is the sound velocity, qD is the Debye
momentum, and g is the coupling constant (deformation potential).

(a) Calculate the lowest order contribution to the self-energy of the elec-
trons, Σ(ε, ~p). The resulting Green’s function describes now polarons
(electrons dressed by phonons).

The Feynman diagram corresponding to the lowest order self-energy is shown in
Fig. 1.
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Abbildung 1: Lowest order diagram for self-energy

Using the diagrammatic rules we obtain

Σ(ε,p) = i

∫
ddq

(2π)d
dω

2π
G0(ε− ω,p− q)U(ω,q) ,



where

G0 =
1

ε− εp + i0 sign εp
.

Here εp ≡ E(p)− µ. Since µ < 0, we have εp > 0. Thus,

G0 =
1

ε− εp + i0
.

We obtain

Σ(ε,p) = ig2
∫

ddq

(2π)d
dω

2π

1(
ε− ω −

[
(p−q)2

2m
− µ

]
+ i0

) c2q2

(ω2 − c2q2 + i0)
,

We use
c2q2

(ω2 − c2q2 + i0)
=
cq

2

[
1

ω − cq + i0
− 1

ω + cq − i0

]
, (2)

where q ≡ |q|.
We, first, perform the integration over ω. Only the first term in (2) contributes, as
its pole is on the other side as compared to that of G0. This gives

Σ(ε,p) =
g2

2

∫
ddq

(2π)d
cq(

ε−
[
(p−q)2

2m
− µ

]
− cq + i0

) .

From now one we use d = 3. We use the spherical coordinates for q such that the
angle θ is measured from the direction of p. Then

Σ(ε,p) =
g2

2

∫
q2dq sin θdθ

(2π)2
cq(

ε+ µ−
[
p2

2m
+ q2

2m
+ pq cos θ

m

]
− cq + i0

) .

We introduce x = − cos θ and obtain

Σ(ε,p) =
g2c

8π2

qD∫
0

q3dq

1∫
−1

dx
1(

ε+ µ−
[
p2

2m
+ q2

2m
− pqx

m

]
− cq + i0

) . (3)

(b) From ReΣ(ε, ~p) extract the dispersion relation of the polaron. Find the
binding energy and the effective mass of the polaron. Tip: show that near
the mass shell (ε ≈ E(~p)− µ) and for |~p| � mc the self energy reads

Σ(ε, ~p) = ε0 − α1 (ε+ µ− E(~p))− α2E(~p) .

Near the mass shell (of the bare electron) , i.e., for ε ≈ p2

2m
− µ the denominator of

(3) is given by ≈ (pqx
m
− q2

2m
− cq+ i0). Since q > 0 we conclude that for p� mc the

denominator cannot vanish. Thus, in this regime (ε ≈ p2/(2m) − µ and p � mc)
the self-energy is purely real and we can disregard i0 in (3). The integral over x can
be easily calculated, as it is a logarithmic one:

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq ln

(
ε+ µ− (p−q)2

2m
− cq

ε+ µ− (p+q)2

2m
− cq

)
.



Let us introduce two small parameters: ∆ ≡ ε + µ − p2/(2m) (has dimensions of
energy) and v = p/m (has dimensions of velocity). Then

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq ln

(
q2

2m
+ q(c− v)−∆

q2

2m
+ q(c+ v)−∆

)
.

Let us first consider the situation exactly on-shell, ∆ = 0. Then, since v � c, we
can expand in v/c and obtain

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq

(
− 2qv

q2

2m
+ qc

)
= − g

2c

4π2

qD∫
0

q3dq
q2

2m
+ qc

.

Usually, qD is of order of the inverse lattice constant, i.e., is large. Therefore,
qD/m � c. Thus, we can neglect cq in comparison to q2/(2m) in the most of
the integration domain. This gives

Σ = ε0 ≈ −
g2cmq2D

4π2
.

This is the binding energy of the polaron. That is a polaron with p = 0 has a
negative energy, lower that the bottom of the conduction band. Next, we expand
to the power v3 and reinstall ∆. We obtain

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq

− 2qv
q2

2m
+ qc−∆

− 2(qv)3

3
(
q2

2m
+ qc−∆

)3 + . . .

 .

Next we expand in ∆

Σ(ε,p) =
g2cm

8π2p

qD∫
0

q2dq

− 2qv
q2

2m
+ qc

− 2qv∆(
q2

2m
+ qc

)2 − 2(qv)3

3
(
q2

2m
+ qc

)3 + . . .

 .

We again neglect qc in comparison with q2/(2m). The resulting logarithmic integrals
should be cut off from below at q ≈ mc

Σ(ε,p) =
g2c

8π2

qD∫
mc

dq

(
−4mq − 8m2∆

q
− 16m3v2

3q
. . .

)
.

Thus, we obtain

Σ(ε,p) = ε0 − α1∆− α2
p2

2m
,

where

α1 =
g2m2c

π2
ln
( qD
mc

)
and α2 = (4/3)α1 .

We find the new dispersion relation by solving

∆− Σ(ε,p) = 0 .



This gives

(1 + α1)

(
ε+ µ− p2

2m

)
− ε0 + α2

p2

2m
= 0 ,

and

ε =
p2

2m

(
1− α2

1 + α1

)
− µ+

ε0
1 + α1

.

We obtain the new mass
m∗ =

m

1− α2

1+α1

.

The new mass is higher than the bare mass: the electron is ”dressed by phonons”.

(c) Consider ImΣ(ε, ~p) and find the life-time of a polaron with momentum ~p.

We start again with

Σ(ε,p) =
g2c

8π2

qD∫
0

q3dq

1∫
−1

dx
1(

ε+ µ−
[
p2

2m
+ q2

2m
− pqx

m

]
− cq + i0

) .

This gives

ImΣ = −g
2c

8π

qD∫
0

q3dq

1∫
−1

dx δ

(
ε+ µ−

[
p2

2m
+

q2

2m
− pqx

m

]
− cq

)
.

ImΣ = −g
2cm

4π

qD∫
0

q3dq

1∫
−1

dx δ
(
2m(ε+ µ− cq)−

[
p2 + q2 − 2pqx

])
.

We define y = p2 + q2 − 2pqx. Then

ImΣ = −g
2cm

8πp

qD∫
0

q2dq

(p+q)2∫
(p−q)2

dy δ (y − 2m(ε+ µ− cq)) .

Consider on-shell situation ε + µ = p2/(2m). Then, the argument of the delta-
function can become zero if

(p+ q)2

2m
>

p2

2m
− cq > (p− q)2

2m

(recall that p > 0 and q > 0). With v = p/m this gives

q2

2m
+ qv > −cq > q2

2m
− qv .

The left inequality is automatically fulfilled, whereas the right one gives

q < 2m(v − c) .
Thus, the polaron has a finite life-time only if v > c. In this case we obtain

ImΣ = −g
2cm

8πp

2m(v−c)∫
0

q2dq = −g
2cm3

3πv
(v − c)3 .

This is the inverse life-time of the polaron (with velocity v > c).



2. Jordan-Wigner Transformation:

(a) Using the trivial property (σzm)2 = 1, we express the fermion operators in terms of
the Pauli matrices

an = σ−n
∏
m<n

σzm, a†n = σ+
n

∏
m<n

σzm.

Note, that since the products do not contain any Pauli matrices at the site n, the
products commute with σ±n . Consequently,

a†nan = σ+
n σ
−
n , ana

†
n = σ−n σ

+
n .

Using explicit form of the Pauli matrices we now find

σ+
n σ
−
n =

(
0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
, σ−n σ

+
n =

(
0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
,

and thus we recover the anticommutation relation

a†nan + ana
†
n = 1.

Similarly,

a2n =
(
σ−n
)2

= 0,
(
a†n
)2

=
(
σ+
n

)2
= 0.

For operators belonging to different sites, we can (without loss of generality) consi-
der two sites n1 < n2. Then

a†n1
an2 = σ+

n1

∏
m<n1

σzm
∏
m<n2

σzm σ−n2
= σ+

n1
σ−n2

n2−1∏
m=n1

σzm.

For the opposite order of the operators we find

an2a
†
n1

= σ−n2

∏
m<n2

σzm
∏
m<n1

σzm σ+
n1

= σ−n2

n2−1∏
m=n1

σzm σ+
n1

= σ−n2
σzn1

σ+
n1

n2−1∏
m=n1+1

σzm

Now, the remaining commutation we’ll perform explicitly:

σzn1
σ+
n1

=

(
1 0
0 −1

)(
0 1
0 0

)
=

(
0 1
0 0

)
= σ+

n1
,

σ+
n1
σzn1

=

(
0 1
0 0

)(
1 0
0 −1

)
=

(
0 −1
0 0

)
= −σ+

n1
,

and hence

an2a
†
n1

= −σ−n2
σ+
n1

n2−1∏
m=n1

σzm = −a†n1
an2 ,

proving the anticommutation for fermionic operators on different sites. Other pairs
of operators can be considered in the same fashion.



(b) Consider the product of operators on adjacent sites:

a†nan+1 = σ+
n

∏
m<n

σzm
∏

m<n+1

σzm σ
−
n+1 = σ+

n σ
z
n+1σ

−
n+1 = −σ+

n σ
−
n+1;

ana
†
n+1 = σ−n

∏
m<n

σzm σ+
n+1

∏
m<n+1

σzm = σ−n σ
+
n+1σ

z
n = σ−n σ

+
n+1;

a†na
†
n+1 = σ+

n

∏
m<n

σzm σ+
n+1

∏
m<n+1

σzm = σ+
n σ

+
n+1σ

z
n = −σ+

n σ
+
n+1;

anan+1 = σ−n
∏
m<n

σzm
∏

m<n+1

σzm σ
−
n+1 = σ−n σ

z
nσ
−
n+1 = σ−n σ

−
n+1.

Now we can use the above relations to transform the terms in the Hamiltonian:

σxnσ
x
n+1 =

[
σ+
n + σ−n

] [
σ+
n+1 + σ−n+1

]
= −a†na†n+1 − a†nan+1 + ana

†
n+1 + anan+1

= −
[
a†n − an

] [
a†n+1 + an+1

]
,

σynσ
y
n+1 = −

[
σ+
n − σ−n

] [
σ+
n+1 − σ−n+1

]
= a†na

†
n+1 − a†nan+1 + ana

†
n+1 − anan+1

=
[
a†n + an

] [
a†n+1 − an+1

]
,

As a result, the Hamiltonian of a generic spin chain takes the form

Ĥ = −
∞∑

n=−∞

{
Jx
[
a†n − an

] [
a†n+1 + an+1

]
− Jy

[
a†n + an

] [
a†n+1 − an+1

]
−Jz

[
2a†nan − 1

] [
2a†n+1an+1 − 1

]
+B

[
2a†nan − 1

]}


