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1. Polarons

We consider electrons in the conduction band of a semiconductor. The di-
spersion relation is F(p) = (p)?/2m, where m is the effective (band) mass
and the energy is measured from the bottom of the conduction band. The
electronic gas in the conduction band is non-degenerate, i.e., the chemical
potential is in the gap between the valence and the conduction bands, i.e.,
w < 0.

Consider a situation in which electrons interact only via emission and ab-
sorption of virtual phonons (no direct Coulomb interaction). Effectively this
means that the "wavy” line in our diagrammatic expansion is now repla-
ced by a phononic line. The latter is proportional to the phonon Green’s
function:
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Only acoustic phonons with the dispersion relation wy(¢) = ¢|¢] and |7] <
qp are taken into account. Here ¢ is the sound velocity, ¢p is the Debye
momentum, and g is the coupling constant (deformation potential).
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(a) Calculate the lowest order contribution to the self-energy of the elec-
trons, Y(¢,p). The resulting Green’s function describes now polarons
(electrons dressed by phonons).

The Feynman diagram corresponding to the lowest order self-energy is shown in
Fig. 1.
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Abbildung 1: Lowest order diagram for self-energy

Using the diagrammatic rules we obtain
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Here €, = E(p) — p. Since pu < 0, we have €, > 0. Thus,
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We obtain
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where ¢ = |q.

We, first, perform the integration over w. Only the first term in (2) contributes, as
its pole is on the other side as compared to that of GGy. This gives
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From now one we use d = 3. We use the spherical coordinates for q such that the
angle 6 is measured from the direction of p. Then
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9 ap 1 1
g°c
z@m=§3/f®/w R ~- )
™. I, (e—i—u—[;’—m—l—g—m—%]—cq%—w)

From ReX(e,p) extract the dispersion relation of the polaron. Find the
binding energy and the effective mass of the polaron. Tip: show that near
the mass shell (e = E(p) — u) and for |p] < mc the self energy reads
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Near the mass shell (of the bare electron) , i.e., for € & % — 1 the denominator of
(3) is given by ~ (Z£ — % —¢q +10). Since ¢ > 0 we conclude that for p < mec the
denominator cannot vanish. Thus, in this regime (¢ &~ p?/(2m) — u and p < mc)
the self-energy is purely real and we can disregard 70 in (3). The integral over z can

be easily calculated, as it is a logarithmic one:
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Let us introduce two small parameters: A = € + u — p?/(2m) (has dimensions of
energy) and v = p/m (has dimensions of velocity). Then
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Let us first consider the situation exactly on-shell, A = 0. Then, since v < ¢, we
can expand in v/c and obtain
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Usually, qp is of order of the inverse lattice constant, i.e., is large. Therefore,
qp/m > c. Thus, we can neglect cq in comparison to ¢*/(2m) in the most of
the integration domain. This gives
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This is the binding energy of the polaron. That is a polaron with p = 0 has a
negative energy, lower that the bottom of the conduction band. Next, we expand
to the power v and reinstall A. We obtain
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Next we expand in A
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We again neglect gc in comparison with ¢?/(2m). The resulting logarithmic integrals
should be cut off from below at ¢ ~ mc

4D

Y(e,p) = g—;i /dq (—4mq - SnjA — 167;5U2 ) :
Thus, we obtain ,
Y(e,p) =€ — A — a22p_m ,
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We find the new dispersion relation by solving

A —3(e,p)=0.



This gives
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The new mass is higher than the bare mass: the electron is ”dressed by phonons”.

Consider Im>i(¢, p) and find the life-time of a polaron with momentum p.
We start again with
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This gives
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We define y = p? + ¢*> — 2pqz. Then
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Consider on-shell situation € + p = p?/(2m). Then, the argument of the delta-
function can become zero if
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(recall that p > 0 and ¢ > 0). With v = p/m this gives
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The left inequality is automatically fulfilled, whereas the right one gives

q<2m(v—c).

Thus, the polaron has a finite life-time only if v > ¢. In this case we obtain
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This is the inverse life-time of the polaron (with velocity v > ¢).



2. Jordan-Wigner Transformation:

(a) Using the trivial property (¢7,)% = 1, we express the fermion operators in terms of

the Pauli matrices
o z P+ z
n—anHam, an—anHam.
m<n m<n

Note, that since the products do not contain any Pauli matrices at the site n, the
products commute with . Consequently,
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Using explicit form of the Pauli matrices we now find
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and thus we recover the anticommutation relation
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For operators belonging to different sites, we can (without loss of generality) consi-
der two sites n; < nsy. Then
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Now, the remaining commutation we’ll perform explicitly:
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and hence

proving the anticommutation for fermionic operators on different sites. Other pairs
of operators can be considered in the same fashion.



(b) Consider the product of operators on adjacent sites:
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Now we can use the above relations to transform the terms in the Hamiltonian:
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As a result, the Hamiltonian of a generic spin chain takes the form
== 3" {0 ] = an] [aly + auia | = Iy [l + 0] [ads = @i

—J. [2a}an = 1] [2a] 10001 — 1] + B [2a}a, — 1] }



