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1. Ruderman-Kittel effect at T > 0:

We consider the Ruderman-Kittel effect at T > 0 similarly to what was done in Exercise
5 at T = 0. In particular, we use the Green’s function in the coordinate representation.
The calculation involves the Fourier transform of the now Matsubara Green’s function
from the momentum to coordinate representation. We will only consider here the ap-
proximate calculation valid at large distances, which technically amounts to linearizing
the excitation spectrum and using the trick of “ξ-integration”. In full analogy with the
previous calculation we find:
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The magnetization or spin density can be expressed in terms of the Green’s function
similarly to the case at T = 0. Formally, the only difference is that one has to replace
factors of −i by −1 in the definitions of the Green’s functions and the perturbation
operator. This way we find

σi(r) = 2JSiT
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which leads to
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.

The sums can be directly evaluated without any further approximations. The result is

σi(r) = JSi
m2T

2π2r2
cos(2pF r)

sinh(2πTr/vF )
.

At T = 0 this results reproduces the leading term in the zero-temperature result found in
the Exercise 5. Also here one could perform the exact integration for parabolic spectrum
and find the generalization of the full result of the Exercise 5 to nonzero temperatures.

One can see from the above result that the oscillatory behavior persists at length sca-
les smaller than the thermal length vF/(2πT ). Given the approximate nature of the
calculation, the result is relevant for length scales

p−1F � r � vF/(2πT ).

Assuming low enough temperatures T � EF this is still a rather wide interval. For
longer length scales the oscillatory behavior is exponentially suppressed.



2. Matsubara susceptibility:

(a) Here we prove that the analytic continuation of the Matsubara susceptibility yields
the Kubo formula.

Consider the Matsubara correlation function

χMAB(iωn) =
1

2

1/T∫
−1/T

dτeiωnτ
〈

Tτ Â
M(τ)B̂M(0)

〉
T
.

Here the subscript M denotes the Matsubara operator, i.e.

ÂM(τ) = e−τĤÂeτĤ .

The brackets indicate thermal averaging

〈. . . 〉T =
1

Z
Tr
(
. . . e−Ĥ/T

)
, Z = Tre−Ĥ/T .

Consider now the basis of te exact eigenstates of the system

Ĥ|n〉 = En|n〉.

Note, that these are the exact many-body states of the system rather than single-
particle states.

In terms of the eigenstates |n〉, the above expression for the Matsubara susceptibility
can be made explicit as follows
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1
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In the second sum we can now exchange the indices. After that we can evaluate the
τ integral (recall that ωn/T = 2πn). As a result, we find

χMAB(iωn) =
∑
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Let us now compare this result with the Kubo formula:

χAB(ω) = i

∫ ∞
0

dteiωt
〈[
Â(t), B̂(0)

]〉
T
.

Here Â(t) is the Heisenberg operator

Â(t) = e−itĤÂeitĤ .



In the basis of the eigen functions of the Hamiltonian, we find

χAB(ω) =
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Z
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Again, interchanging the indices in the second line and integrating over t we find

χAB(ω) =
∑
n1,n2

e−En1/T − e−En2/T

ω − (En1 − En2) + i0
〈n1|Â|n2〉〈n2|B̂|n1〉.

The imaginary part in the denominator appears due to the formal divergence of
the time integral. In order to make the integral formally convergent one typically
adds a factor e−δt to the integrand, which results in the infinitesimal imaginary part
(δ → 0).

The proof of the equivalence of the two approaches follows from comparison between
the obtained results for χMAB(iωn) and χAB(ω). Since the susceptibility χAB(ω) is
an analytic function in the upper half-plane of complex ω, it can be analytically
continued from the real axis onto the imaginary half axis with Imω > 0. There
it coinsides with χMAB(iωn) for points iωn = 2πinT , n > 0. Assuming now that
the Matsubara susceptibility can be continued from the imaginary half axis onto
the uper half-plane, we find that this continuation’must coinside with χAB(ω) (as
guaranteed by the general theorems of the complex analysis).

(b) Consider now the dynamical spin susceptibility. In the Exercise 6 this quantity was
found at T = 0 with the help of the Kubo formula. Now we would like to find it with
the help of the Matsubara susceptibility. The latter is given by the loop diagram
corresponding to the expression

χMαβ(iωn, k) = −2µ2
BδαβT

∑
ωm

∫
d3p

(2π)3
G(iωm,p)G(iωm + iωn,p + k).

The Matsubara sum can be calculated explicitly

T
∑
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=
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.

Here we have used the identity
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1

(2n+ 1)2 + a2
=
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.

As a result, the Matsubara susceptibility has the form

χMαβ(iωn, k) = −2µ2
Bδαβ

∫
d3p

(2π)3
nF (ξp+k)− nF (ξp)

iωn − ξp+k + ξp
.



This integral cannot be evaluated analytically for arbitrary values of the parameters.

Consider however the case of low temperatures T � EF and long wavelengthes
k � pF . In this case, we can use the trick of the “ξ-integration”. Using the identity∫

dξ [nF (ξ)− nF (ξ + vk)] = vk,

we find

χMαβ(iωn, k) = 2µ2
Bν0δαβ

∫
dΩ

4π

vFnk

iωn − vFnk
.

The angular integration is identical to that discussed in the Exercise 6. The result
is given by

χMαβ(iωn, k) = 2µ2
Bν0δαβ

[
1 +

iωn
2vFk

ln
iωn − vFk
iωn + vFk

]
.

The analytic continuation amounts to the replacement iωn → ω + i0. The result
coinsides with the T = 0 result of the Exercise 6:

χ(ω, k) = 2µ2
Bν0

[
1 +

ω

2vFk
ln

∣∣∣∣ω − vFkω + vFk

∣∣∣∣] .


