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1. Complex contour integrals (? Bonus points)

Calculate the following integrals using the techniques discussed during class.

(a) I1 =
∮
|z|=2

dz z
exp(iz)−1

Hint: Use the Cauchy theorem.

Solution: The integrand is holomorphic everywhere but at z = 2πk, k ∈ Z\{0}.
(The point z = 0 can be considered by expanding the denominator around z = 0.)
None of these points is enclosed by the contour, thus

I1 = 0 (1)

(b) I2 =
∮
|z|=2

dz exp
(

z
z−1

)
Hint: Use the residue theorem, calculating the residue via Laurent expansion.

Solution: The integrand is holomorphic everywhere, but at z = 1. At this point,
the function has an essential singularity, which does not correspond to a finite order
pole. Thus, it is most convenient, to calculate the residuum directly via its definition
as the −1 coefficient in the Laurent expansion.
We find the Laurent expansion of the exponential function by substituting x =
z − 1 and performing a Taylor expansion around x = 0. This expansion is valid
everywhere but at z = 1:

exp

(
x+ 1

x

)
= exp(1) exp

(
1

x

)
(2)

= e
∞∑
n=0

x−n

n!
(3)

= e
∞∑
n=0

(z − 1)−n

n!
(4)

= e
0∑

n=−∞

(z − 1)n

(−n)!
(5)

The −1 coefficient of this expansion (corresponding to 1/(z − 1)) is e. Thus, ac-
cording to the residue theorem

I2 = i2πe. (6)

Using mathematica, we can verify this by parametrizing the contour as z = 2 exp(iϕ),
ϕ ∈ [0, 2π).



(c) I3 =
∫∞
−∞ dx x sin(αx)

x2+β2 , with real numbers α, β > 0.
Hint: Find a way to rewrite this integral in terms of a complex contour integral.
Solve the resulting integral using the residue theorem.

Solution:

I3 =

∫ ∞

−∞
dx

x sin(αx)

x2 + β2
(7)

=
1

2i

∫ ∞

−∞
dx

x(exp(iαx)− exp(−iαx))

x2 + β2
(8)

=
1

2i

∫ ∞

−∞
dx

x exp(iαx)

x2 + β2
− 1

2i

∫ ∞

−∞
dx

x exp(−iαx)

x2 + β2
(9)

= −i

∫ ∞

−∞
dx

x exp(iαx)

x2 + β2
(10)

= −i

∮
γ

dx
x exp(iαx)

x2 + β2
+ i

∫
half circle

dx
x exp(iαx)

x2 + β2︸ ︷︷ ︸
:=I′3

(11)

Here, γ is a path along the real axis, which is closed by a half circle of radius R → ∞
in the upper complex half plane. By showing, that the integral over the half circle
I ′3 vanishes, we can compute I3 via the integral over the closed contour γ, which
can be solved using the residue theorem.
First, we show that the half circle integral vanishes. (We can also see this directly
invoking Jordan’s lemma.) To this end, we parametrize the contour as z =
R exp(iϕ), ϕ ∈ (0, π):

I ′3 = i lim
R→∞

R2

∫ π

0

dϕ exp(2iϕ)
exp(iαR exp(iϕ))

R2 exp(2iϕ) + β2
(12)

We consider the modulus:

|I ′3| ≤ lim
R→∞

R2

∫ π

0

dϕ
| exp(iαR[cos(ϕ) + i sin(ϕ)])|√

R4 + β4 + 2R2β2 cos(2ϕ)
(13)

= lim
R→∞

R2

∫ π

0

dϕ
exp(−αR sin(ϕ))√

R4 + β4 + 2R2β2 cos(2ϕ)
(14)

= lim
R→∞

R2

[∫ π−δ

δ

dϕ
exp(−αR sin(ϕ))√

R4 + β4 + 2R2β2 cos(2ϕ)
+ 2

∫ δ

0

dϕ
exp(−αR sin(ϕ))√

R4 + β4 + 2R2β2 cos(2ϕ)

]
(15)

In the last step we subdivided the integral into two three regions ([0, δ] gives the
same result as [π− δ, π]), which we consider separately. The first term we estimate
by the interval length times the maximum of the integrand:

|I ′3| ≤ lim
R→∞

R2

[
π exp(−αR sin(δ))√

R4 + β4 + 2R2β2 cos(2δ)
+ 2

∫ δ

0

dϕ
exp(−αR sin(ϕ))√

R4 + β4 + 2R2β2 cos(2ϕ)

]
(16)

In the second term we use exp(−αR sin(ϕ)) ≤ 1:

|I ′3| ≤ lim
R→∞

R2

[
π exp(−αR sin(δ))√

R4 + β4 + 2R2β2 cos(2δ)
+ 2δ

1√
R4 + β4

]
(17)



Setting δ := 1/
√
R, the integral vanishes as I ′3 ∼ 1/R for R → ∞. Note, that all

of this would not work for a higher power of x in the numerator of the integrand in
I3.
As I ′3 = 0, we find

I3 = −i

∮
γ

dx
x exp(iαx)

x2 + β2
(18)

The integrand is holomorphic everywhere, but at x = ±iβ:

1

(x2 + β2)
=

1

x+ iβ

1

x− iβ
(19)

The first order pole at x = iβ is enclosed by γ, therefore

I3 = 2πResz0=iβ

[
x exp(iαx)

x2 + β2

]
(20)

= 2π exp(−αβ)/2. (21)

(d) I4 =
∫ 1

−1
dx (1 + x)α(1− x)1−α, 0 < α < 1

Hint: The integrand contains a branch cut in the complex plane. Find this branch
cut, and show that the integral can be expressed as

I4 = const ·
∮
C
dz (1 + z)α(z − 1)1−α (22)

where C is an appropriately chosen contour enclosing the line [−1, 1]. Determine
the constant and solve the resulting integral using a substitution z → 1/w.

Solution: The initial integrand is analytic everywhere except at the branch cuts
] − ∞,−1] and [1,∞[ on the real axis. We can shift the branch cut to [−1, 1] by
modifying the second term.

By shifting x by infinitesimal ε to upper/lower half-plane (UHP/LHP), we write

(1− x)1−α = [(x+ iε− 1)(−1− iε)]1−α = exp[−(1− α)πi](x+ iε− 1)1−α, (23)

where we used the exponential identity

(ab)α = aαbα, (24)

which is only valid when the sum of the complex phases of a and b do not cross a
branch cut:

−π < ph a+ ph b < π. (25)

This implies that when we shift x − 1 to UHP, we must shift −1 to LHP, or vice
versa.

Since (1− x)1−α is real for −1 < x < 1, we may take the absolute value:

(1− x)1−α = |(x+ iε− 1)1−α| = Im [(x+ iε− 1)1−α]

sin[(1− α)π]
, (26)

on the second step we used the imaginary part of the identity

|w|eiphw = Rew + iImw. (27)



Similarly, the shifting x to LHP gives

(1− x)1−α = −Im [(x− iε− 1)1−α]

sin(απ)
. (28)

Now the integral can be expressed as a contour integral

I4 = − 1

2 sin(απ)
Im

∮
γ

dz(1 + z)α(z − 1)1−α, (29)

where the closed contour γ goes first from −1− iε to 1− iε and then from 1+ iε to
−1+ iε. The connecting infinitesimal parts can be neglected, since the integrand is
finite.

The above form still does not allow us to use the residue theorem, since there is a
branch cut on the real axis for z ∈ [−1, 1]. The usual trick is to transform

z =
1

w
. (30)

Using this we obtain

−
∮
γ

dw
(1 + w−1)α(w−1 − 1)1−α

w2
= −

∮
γ

dw
(w + 1)α(1− w)1−α

w3
(31)

as the integrand. The numerator is analytic everywhere but the branch cuts. The
branch cut is transformed to two cuts at ]−∞,−1] and [1,∞[ and the transformed
contour avoids it (see Fig. 1 for a picture of the contour after the transformation).
The only singularity inside the contour is at w = 0 and comes from the denominator.

The Taylor expansion of the numerator at w = 0 is

(w + 1)α(1− w)1−α = 1− (1− 2α)w − 2α(1− α)w2 +O
(
w3

)
. (32)

Multiplying this with the denominator w−3, the −1th Laurent coefficient of the
integrand can be identified as

a−1 = −2α(1− α). (33)

After using the residue theorem, taking the imaginary part and adding the prefactor,
we find that the integral is

I4 =
2πα(1− α)

sin(απ)
. (34)



2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Re(z)

3

2

1

0

1

2

3

Im
(z

)

Figure 1: The box contour (black line) for I4 after transformation w = 1/z. Red lines are
branch cuts, x marks the singularity within the integration path. For this example, ε = 0.3
was chosen.


