Karlsruher Institut für Technologie – Institute for Condensed Matter Theory Institute for Quantum Materials and Technologies

Condensed Matter Theory II: Many-Body Theory (TKM II) SoSe 2023

PD Dr. I. Gornyi and Prof. Dr. A. Mirlin	Homework assignment 1
Dr. Risto Ojajärvi and Paul Pöpperl	Deadline: 28 April 2023

1. Real-space Green's functions

(5 + 5 = 10 points)

Starting from the momentum-space retarded Green's function

$$G^{\mathrm{R}}(\mathbf{k}, E) = \frac{1}{E - \frac{\hbar^2}{2m} \mathbf{k}^2 + \mathrm{i}\delta},\tag{1}$$

where **k** is a *d*-dimensional momentum, calculate the real-space retarded Green's function $G^{R}(\mathbf{r} - \mathbf{r}', E)$

- (a) in one dimension, d = 1
- (b) in three dimensions, d = 3.

Hint: Integrals can usually be solved using contour integration, as practiced on sheet 0.

2. Green's function in graphene

Starting with the effective Hamiltonian of electrons in one valley of graphene,

$$\widehat{H} = v(\sigma_x \hat{p}_x + \sigma_y \hat{p}_y)$$

(here σ_x and σ_y are the Pauli matrices in the sublattice space), find the retarded Green's function $G^R(\varepsilon, \mathbf{p})$ for free electrons as a 2×2 matrix in the sublattice space.

3. Friedel oscillations around a barrier in a 1D system (8+8+8+6=30 points)

(a) Express the density n(x) of non-interacting fermions in D = 1 spatial dimension at zero temperature in terms of the imaginary part of the retarded Green's function $G^{R}(\varepsilon; x, x')$, starting from the zero temperature expression

$$n(x) = \sum_{\alpha \in \text{occupied}} |\psi_{\alpha}(x)|^2, \qquad (2)$$

where ψ_{α} are the single particle wave functions and the sum is taken over all states with energy $\varepsilon < \varepsilon_{\rm F} := 0$.

- (b) Find $G^R(\varepsilon; x, x')$ for non-interacting one-dimensional fermions with parabolic dispersion $E = \frac{\hbar^2 k^2}{2m}$ in the presence of a δ -barrier $V(x) = V_0 a \delta(x)$.
- (c) Using the relation between the scattering amplitude $f(\mathbf{k}, k\mathbf{n})$ and the Green's function (see lecture notes for the relation), calculate the reflection and transmission amplitudes for the δ -barrier. *Hint: How are the reflection and transmission amplitudes related to the wave functions before and after scattering?*
- (d) Calculate n(x) around this barrier at zero temperature. (You can use the formula derived in part (a)).

(10 points)