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1. Green’s function of phonons (20 points)

In the lectures, when addressing the many-body Green’s functions, we mainly focused on
fermions. Here, we will discuss bosons, using phonons as an example. Consider flexural
phonons with the Hamilton operator

~ apa 1
H:Zu)q (bgbq‘f‘i),
q

where w, = k|q[?, £ is the lattice stiffness, and q is a 2D momentum. Introduce the

field operator,
3 : W 7 iqr 7t _—iqr
O(r)=1i gq ,/ﬁ(bqeq —ble q).

Determine the Green’s function of phonons in the q,w-representation. Then Fourier
transform the result to r, t-representation, assuming a momentum-cutoff at ¢ = A.

Solution:

Heisenberg representation:
= _ Wqg (7 iqr—iwgt 7t —igrtiwgt
O(r,t) =1 Z A/ Ve (bqe 9t —be at ).
q

Definition of Green’s function [note that the phonon field is real: &37(1@ t) = (/Is(r, t)]:

D(r,t:r',t) = —i{0|T®(r,t)®(xr', ')|0), (1)
where |0) denotes the ground state (no phonons). Translational invariance in space and
time:

D(r,t;x’,t') = D(xr — ', t —t') — D(r,1). (2)
(01bLbq [0) = (01LDL10) = (Olbbg |0) =0, (0bgdl,[0) = b =>
(0] (abg + BbL) (0'bgy + B'B,)10) = (0]aB'bgbl,|0) = af'daq,
(0[(a'bg + B'BL, ) (abg + BDL)[0) = (0] Bbebl|0) = o Bgq. (3)
t>0:

2
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D(r,t) = —@Z(,/2;> (0]bge™ qug|o>:—22ﬁeq at (4)

q q



t<0:
2
D( t) s Z & <O’b 7iqr+iwqth |0> _ Z ﬁ —iqr-+iwgt (5)
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Fourier transformation from r,t to q, w:
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D(q,w) = —i% [/ dteiwt+iwqt+0t+/ dteiwt—iwqt—Ot]
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a
= — 4 6
wQ—wg—l—iO (6)

Fourier Transform back to r, t:

® du exp(—iwt)w?
D(q,t) = — 1 7
(a.1) /_0027rw2—w(21+i() (7)
= —2ir’¢’k exp(—ig’klt|) (8)
D(r,t) = —217T2/<a/ &g exp(igr)q? exp(—ig*x|t|) (9)
A (2m)?
Here A on the integral sign reminds us of the cutoff.
A
d d
D(r,t) = —217r2/£/0 Q%qg/;;exp(—iqrcos(qb)m]ﬂ) (10)
A
dg .
= —217r2/£/ —qquQ(qr/i\tD (11)
o (2m)
where By is the first kind zeroth order Bessel function. we find
imA?
D(r,t) = “lrRliE [2Bs(rk|t|A) — ri|t|ABs(rk|t|A)] . (12)

More convenient: Introduce exponential cutoff:

Dir.1) = —2in’s / N (Sj) exp(—q/A)g* Bolgralt) (13)
B 6 — 9A2(rklt])? (14)

A3 (5 + (r]t])2) ™

. Polarizability of a particle in a 1D potential (8 + 10 + 12 points)

Consider a charged particle in a one-dimensional system with a potential well charac-
terized by the amplitude V; and the spatial range a. Assume that Vy < h%/(2ma?).
Suppose the particle is in the ground state. The polarizability x in a weak external
electric field E relates the polarization (dipole moment) with the field: P = yE.



(a) Write down the expression for the Green’s function in the momentum representation
in the absence of electric field in terms of the scattering amplitude F. Solve the
equation for F(e,p; &~ 0,ps &~ 0) when Vj < i%/(2ma?) by assuming that F does
not have any poles in momentum space. Estimate the bound state energy ¢g.

Solution: Let us consider a square well potential for definiteness

Viz)=6(a/2 —|z)Vo  Vo<0 (15)
a/2

V() =V, dx exp(—ikx 16

= V(k) /a/2 p( ) (16)

= _Llok [exp(—iak/2) — exp(iak/2)] (17)

_ 2%%_ (18)

From now on we set a = h = 1.
We consider a particle in a bound state with energy ¢;. Bound state implies

léo] < [Vol, €0 <0. (19)

We describe the bound state in terms of the retarded Green’s function G® (e, py, po)
(from now on we drop the label “R” in all expressions). As it will turn out, we need
the Green’s function around p; & py ~ 0 (see task (c)).

From the lectures we know that we can write the Green’s function as

G = G+ GoFG,, (20)

where
dp
F(e,p1,p2) = V(p1—p2) +/2—7T3V(Z91 —p3)Gole, p3)V(ps —p2) +.... (21)

The Green’s function in the energy-momentum space can thus be written as

271'(5(]?1 —p2> F<€7p17p2)

G = . 22
(prp) = o o T e T 0)e— ey 7 10) (22)
The function F(g,py,p2) in a 1D system satisfies the equation
dps V(p1 — p3) F'(e, ps,
Fle,prp) = Vpr —p) + | 52 (P = po) e, Py ) (23)

2r e —pi/(2m)+i0

We are interested in evaluating F' at the bound state energy ¢ = ¢y < 0. Because
we assume that Vj is small, the poles py = £i4/2m|eg| are close to the real axis, and
the integrand is sharply peaked around p3 = 0. On the other hand, when a is small,
V' varies very slowly. If we choose p; and ps close to the origin, we can approximate
V(q) = Vy in the first term and also inside the integral.

Consider this equation around F'(e,0,0):

%V(_p:%)F(Eo;pS;O)
21 €9 — p3/(2m) +10

F<€0a070):%+/



where we used V(k = 0) = V.

Assuming, that F'(eg, p3, 0) does not have any peaks along ps for p3 # 0, this integral
is determined by the peaks from the denominator, at p; = 0.

We thus obtain an algebraic equation

d 1
Fleo, 0,0) = Vi + Vo F(eg, 0 0)/ 237’:’ Py (25)
3
=V — VoF(e0,0,0), | -~ (26)
2|€0|

From Eq. we see that this equation is stable to perturbations in p; &~ py ~ 0.
We thus find

F(eo,p1 = 0,p2 = 0) := F(eg) (27)
Vo

1 + ‘/0 \/ 2|€0|
Since Vy < 0, this expression has a pole at

- wf (29)

(30)

(28)

:>60—— 2

This pole indicates the existence of a bound state: F' is related to the full Green’s
function through Eq. , and the Green’s function can be written

?/1 pl ¢a(p2)
G E —_— 31
(57]717]72 £ — €, ( )
In summary, we find a single bound state in the limit |Vy|m < 1.

Express the dipole moment P = [ dxzan(z) of the system in terms of the exact
Green’s function in the momentum representation. You should find

. dp, 0
P—ze/ o {aleeSG (5>p1>p2):|

e=€0+i0;p1=p2

Solution:

pP= e/dx an(z) (32)
_ ——/dxx/ de Im(G(e, =, ) (33)
—c [ dzalbui (@) (34)

In the second equality, we used (see last solution, Eq. (29))

Im (GR(¢;r,1)) = —WZ\% )26 (e — &4 (35)



and the fact that there is exactly one bound state in the considered limit Vym — 0.
To rewrite the integrand from Eq. we use

Thus, we have

|[Yha(eo) (#)]* = lim (¢ — €)

E—€Q

P(z) = e/dx zRes.,,G(e, x, 1)

= —ei

[

dpy dpa
2r 27
dpl dPQ
o 27
dp dpz

Ip1

[Va(x)]?
[2 - w]

= Res.,,G(e, x, 7).

T 27 op1

dpl 0
27

ReSg*)({OG(€7 b1, p2)‘|

{/ dz xexp(iz(p; — pQ))} Res. 4, G (g, p1,2)
0
|: _5(]71 >:| Rese%eoG(gapb])Z)

0
m0(p1 — p2)) 5 —Resc e, G (€, 1, p2)

pP2=p1

(¢) Consider now the Green’s function in the potential

W = —eFEx

(38)
(39)
(40)
(41)

(42)

induced by the applied electric field. What is a graphical representation for the
linear-in-E correction to the Green’s function? Using the diagrams, evaluate the
polarizability of the system.

Hint: Why can you use F' with p1 =0, py =07

Solution:

A weak electric field is applied to the system. The Green’s function of the system
including the electric field is defined by the equation

(e—H—-W)Gwl(e) =

1

(43)

where H = Hy + V. We can use the Green’s function of H (calculated in the first

subtask) to find Gy:

() =

w

£) Z[WG 5

n=0

We can also do this without operator notation explicitly:

D,:=¢—H,

(D, + WI)GE/ (5)
= D$G¥f (e) =

WGxx’( )

(44)

(45)
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Using G to solve the last equation (dropping energy argument in the notation):

Gz[’/m, — /dlﬂ GI7$// [5$//7I/ —|— WQC”GZ‘",Z‘/] (50)
= Gx@/ + /dﬂ?” Wx//GZ‘///w/ (51)
Fourier transformation of second term:
dp dyp’ . o
/dZBH _p_pelpze—lpx G, x”WCL‘”G‘z/V” o= /dx” GPIHWINGE/// ) (52)
21 21 ’ : ’ P
" dp// s on w
= [ dx o exp(ip"2" )Gy War G
(53)
1
— %/dp” dp/// Gp,pNW(p// o p///)GX[I/”’p/
(54)
Thus:
1
Gw (e, p1,p2) = G(e, p1,p2) + o /dp3 dps G(e, p1, p3)W (s — pa)Gw (€, 1, D2)
(55)
Up to linear order in W we find
Gw(e) =G(e) + G(e)WGE(e). (56)

At this point, we note that it is justified to use the expression for F(eg, p; ~ 0, py ~
0) in this formula. Due to Eq. (42)) we evaluate the Green’s function at ¢ = ¢.
Again, in the given limit |Vglm < 1 the Green’s functions Gy(eg,p) are strongly
peaked around p = 0, allowing to substitute the slowly changing F'(ey, p1, p2) by its
value in the peak region.

To determine the polarizability
x = |P/E], (57)
we plug in the term induced by the electric field

0G(e) = Gw(e) — G(e) (58)
=G(e)WG(e) (59)

into the expression for the dipole moment .
Expressing GG through G and F', we have

5G = GoW Gy + GoFGoW Gy + GoWGoFGy + GoFGoWGoFGy  (60)

= 6GW 4+ 5GP +6GP + 5GW. (61)
The momentum space representation of the electric field reads
W(p) = —eE/dx exp(—ipz)x (62)
.0
= —2mieE—0(p). (63)

dp



We calculate the terms one by one:

1
6GW (g, p1,p2) = %/dm dps Go(e,p1, p3)W (ps — pa)Gole, pa, p2) (64)
. , 5(1?1 —P3) 5(194 - p2)
= —iel [ dpsdps o —
¢ / P3 dps 0'(ps = pa) - 02/ (2m) + 10 — p2/(2m) + i0
(65)
. 8 (p1 — pa) d(pa — p2)
— _ieE
1 /dp4 e—p3/(2m)+i0e — p3/(2m) + 10 (66)
D1 5(191 —p2)

=ieF

(e — p2/(2m) +i0)2 e — p2/(2m) + i0 (67)

This can be seen to vanish when plugged into the expression for P (Symmetric
integration interval, antisymmetric integrand):

! : P1 d(p1 — p2)
PG ) [ ey ) o e ) 70
(68)
_ P1 1
‘l/@“@—mwem>+MVs—pwmmy+m (69)

therefore, it does not contribute to P (see Eq. (38)).
Second term:

1
6G@ (e,p1,p2) = —/dps dps Go(g,p1,p3)W (ps — pa)Gole, pa) F(e)Go(e, p2) (70)

2m
= %/dm Go(p1)W (p1 — pa)Go(ps) F(€)Go(p2) (71)
= —ieEF(e) /dp4 Go(e,p1)0"(p1 — pa)Go(e, pa)Gole, pa) (72)
= —ieFEF (e)Go(e,p1)Gy(e, p1)Gole, p2) (73)
: _ieEF(e) D1 1 (74)

m (e —p2/(2m) +10)3 ¢ — p2/(2m) + 10

Similarly, the third term:

1
5G(3)(€,p1,p2) = F(g)— /dp3 dp4 Go(&pl)Go(&p:z)W(pzz - p4)Go(€,P4)5(p2 - p4)

2
(75)
_qﬁﬂ@/@¢MWMQ@mW%—mWWWﬁ (76)
: ieEF(e) 1 D2 (77)

m  e—p?/(2m) +i0 (e — p3/(2m) +10)3



Last term:

1
6GW (e, p1,p2) = F(e)* — /dp3 dps Go(g,p1)Go(e, p3)W (ps — pa)Gol(e, pa)Gole, p2)

2m
(78)
= —ieEF(€)2G0(€,p1)G0(€,pz) /dp4 Go(e,p3)Gole, ps) (79)
= —ieEF(E)2G0(€,p1)G0<57P2) /dp3 (8 _pg/(];?;n) + 10)3 <80>
=0. (81)

(Integration of antisymmetric function over symmetric interval.)
We end up with

ieFF(e
5G(€7p17p2) - m( )G0<57p1)G0<57p2) [pQG(Q)(Evpz) _plG(Z)(evplﬂ (82)
To find P, we calculate the residue of this expression (see Eq. ([12)))
: ieF _
Ehglok — €0]0G(e,p1,p2) = —Go(é‘o,pl)Go(Go,m) [P2G(2)(€07P2) - PlG(Q)(Go,Pl)} 8113210[5 — €] F'(e)
(83)
Isolating the pole in F'(¢) at € = €p:
%
Ple) = —— 2 — (51)
’%’ 2|5
NI+ 12 -
= 85
V2m
=3
Vol(1 + Vol /22)
= —e] 72 (86)
el -
Therefore:
= lim[e — €] F(e) = m|Vp|? (87)
E—r€Q
Eh_gl 6G(g,p1,p2) = ieE|Vo[*Gol(eo, p2) [p2Gi (€0, p2) — p1Gi(€o, p1)] (88)
And using mathematica to evaluate this in the epxression for P (42)
d 0 5e2E
P = ie/ﬂ {— lim 0G (g, p1,p2) = —6—2 (89)
Op1 e—eo — 16egm
Finally
5e?
= |P/E| = —— 90

The polarizability captures, how strongly the dipole moment of the system
changes due to the application of a weak electric field. From our result we read off
that the change in the dipole moment increases as the binding energy tends to zero.
This is expected, since a weakly bound particle can be displaced more easily.



