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1. Three-particle interaction: (10 + 10 + 10 points)

In the lectures, we formulated the Feynman diagrammatic rules for fermions and an-
alyzed the perturbative expansion of the Green’s function in the case of a pairwise
interaction between particles.

Consider a model system of fermions with spin S that interact through the three-body
contact interaction potential: U3(r1, r2, r3) = λ δ(r1 − r2)δ(r1 − r3). The corresponding

operator Û3 now contains six field operators.

(a) In analogy to the discussion of pairwise interaction in the lecture, write the inter-
action potential in terms of creation and annihilation operators and field operators.

Solution:

U(r1, r2, r3) = λδ(r1 − r2)δ(r1 − r3) (1)

The potential is diagonal in spin space.
As in the lecture, we express U in terms of creation and annihilation operators:∑

i ̸=j ̸=k

U(ri, rj, rk) ⇔
∑

i,j,k,l,m,n

Ui,j,k;l,m,na
†
ia

†
ja

†
kalaman (2)

where

Ui,j,k;l,m,n = ⟨i, j, k|U |l,m, n⟩ (3)

=

∫
dr1 dr2 dr3 dr

′
1 dr

′
2 dr

′
3

∑
σ1,σ2,σ3,σ′

1,σ
′
2,σ

′
3

⟨i, j, k|(r1, σ1), (r2, σ2), (r3, σ3)⟩×

(4)

× ⟨(r1, σ1), (r2, σ2), (r3, σ3)|U |(r′1, σ′
1), (r

′
2, σ

′
2), (r

′
3, σ

′
3)⟩× (5)

× ⟨(r′1, σ′
1), (r

′
2, σ

′
2), (r

′
3, σ

′
3)|l,m, n⟩ (6)

=
∑

σ1,σ2,σ3

∫
dr1 dr2 dr3× (7)

× ψ∗
(i,σ1)

(r1)ψ
∗
(j,σ2)

(r2)ψ
∗
(k,σ3)

(r3)U(r1, r2, r3)ψ(l,σ1)(r1)ψ(m,σ2)(r2)ψ(n,σ3)(r3)

(8)

= λ
∑

σ1,σ2,σ3

∫
dr1 ψ

∗
(i,σ1)

(r1)ψ
∗
(j,σ2)

(r1)ψ
∗
(k,σ3)

(r1)ψ(l,σ1)(r1)ψ(m,σ2)(r1)ψ(n,σ3)(r1)

(9)



Here and in the following we write r instead of r and dr instead of ddr for brevity.
Introducing field operators, we obtain:

U = λ
∑

σ1,σ2,σ3

∫
dr1 ψ

†
σ1
(r1)ψ

†
σ2
(r1)ψ

†
σ3
(r1)ψσ1(r1)ψσ2(r1)ψσ3(r1) (10)

Note that all field operators share the same position argument, as we are considering
a contact interaction potential.

(b) Draw all diagrams needed for the calculation of the Green’s function to first order in
λ. You can assume, that disconnected diagrams cancel as is the case for a pairwise
interaction (this can be shown).

Solution: The diagrams contributing to the first order correction to the Green’s
function have one interaction vertex each.
The Green’s function is defined as

Gσ,σ′(r, t; r′, t′) = −i ⟨ϕ0| T ψσ(r, t)ψ
†
σ′(r

′, t′) |ϕ0⟩ (11)

All connected diagrams with one interaction vertex:

r1

(r, σ) (r′, σ′)
σ1

σ2

σ3

Figure 1: Diagrams J1, J2, J3, J4, J5, J6

As in the lecture a line with an arrow denotes a free fermionic Green’s function. The
arrow points from creation to annihilation. The interaction potential corresponds
to three creation- and three annihilation operators (instead of two as for pairwise
interaction). Therefore, we draw the interaction potential as a wavy “triangle” with
three endpoints, instead of a wavy line with two endpoints. Every endpoint has one
in- and one outgoing fermionic line.
All diagrams have a prefactor 3, as the operator into which ψσ(r) is contracted can
be chosen arbitrarily.

(c) Using these diagrams, find the total 1st-order correction to the free Green’s function
in energy-momentum space. Assume, that the non-interacting system is transla-
tionally invariant and diagonal in spin-space, G0σ,σ′(ε, r, r′) → G0(ε, r−r′)δσ,σ′ . The
correction should be written in terms of λ, S, G0(ε,k), n0 where n0 is the particle
density.



Solution: The diagrams are derived from the expression

iG
(1)
σ,σ′(ε, r, r

′) = −iλ

∫
dt exp(iεt)

∫
dt′

∫
dx′

∑
σ1,σ2,σ3

× (12)

× ⟨0| T
[
ψ†
0,σ1

(x′, t′ + 0)ψ†
0,σ2

(x′, t′ + 0)ψ†
0,σ3

(x′, t′ + 0) (13)

ψ0,σ1(x
′, t′)ψ0,σ2(x

′, t′)ψ0,σ3(x
′, t′)ψ0,σ(r, t)ψ

†
0,σ′(r

′, 0)
]
|0⟩ (14)

Second diagram:

J2,σ,σ′(ε, k) = −λ
∫

dt exp(iεt)

∫
dt′

∫
dx′

∑
σ1,σ2,σ3

∫
d(r − r′) exp(ik(r − r′))×

(15)

×Gσ,σ1(t− t′, r − x′)Gσ1,σ′(t′, x′ − r′)Gσ2,σ3(0, 0)Gσ3,σ2(0, 0) (16)

= −λ
∑

σ1,σ2,σ3

Gσ3,σ2(0, 0)Gσ2,σ3(0, 0)

∫
dx′× (17)

×
∫

d(r − r′) exp(ik(r − r′))Gσ,σ1(ε, x
′)Gσ1,σ′(ε, r − r′ − x′) (18)

= −λ
∑

σ1,σ2,σ3

Gσ3,σ2(0, 0)Gσ2,σ3(0, 0)Gσ,σ1(ε, k)Gσ1,σ′(ε, k) (19)

= −λn2
0G

2(ε, k)
∑

σ1,σ2,σ3

δσ2,σ3δσ,σ1 , δσ1,σ′ (20)

= −G2(ε, k)λn2
0δσ,σ′(2S + 1) (21)

Here we denoted the free Green’s function by G and used Gσ,σ′(r = 0, t = −0) =
in0δσ,σ′ (lecture Eq. (3.182) and free system diagonal in spin space) where n0 is the
free density.
Similarly:

J1,σ,σ′(ε, k) = λn2
0G

2(ε, k)
∑

σ1,σ2,σ3

δσ,σ′δσ2,σ2δσ3,σ3 (22)

= λn2
0G

2(ε, k)(2S + 1)2 (23)

J3,σ,σ′(ε, k) = λn2
0G

2(ε, k)
∑

σ1,σ2,σ3

δσ,σ1δσ′,σ2δσ2,σ3δσ1,σ2 (24)

= λn2
0G

2(ε, k)δσ,σ′ (25)

J4,σ,σ′(ε, k) = −λn2
0G

2(ε, k)δσ,σ′(2S + 1) (26)

J5,σ,σ′(ε, k) = −λn2
0G

2(ε, k)δσ,σ′(2S + 1) (27)

J6,σ,σ′(ε, k) = λn2
0G

2(ε, k)δσ,σ′ (28)

The result is

G
(1)
σ,σ′(ε, k) = 3λn2

0G
2(ε, k)δσ,σ′(2 + (2S + 1)2 − 3(2S + 1)) (29)

= 6λn2
0G

2(ε, k)δσ,σ′S(2S − 1). (30)

(d) Calculate the interaction-induced change in the ground state energy ∆E = E −E0

to first order. Start by drawing the contributing diagrams.



Solution:

From the lecture we know, that the ground state energy is related to the sum of
connected vacuum diagrams (lecture equation (3.204)). To lowest order we need to
consider connected diagrams with one interaction vertex

∆E = (E − E0) ≈
i

T
(connected vacuum diagrams with one interaction vertex)

(31)

We can construct the following topologically different diagrams:

Figure 2: Topologically different diagrams I1, I2, I3.

These diagrams are derived from the expression

−iλ
∑

σ1,σ2,σ3

∫
dt

∫
dr ⟨0| T

[
ψ†
0,σ1

(r, t+ 0)ψ†
0,σ2

(r, t+ 0)ψ†
0,σ3

(r, t+ 0)× (32)

× ψ0,σ1(r, t)ψ0,σ2(r, t)ψ0,σ3(r, t)] |0⟩ (33)

There is one series of contraction that gets the first expression, 2 for the second
diagram, and 3 for the third diagram. We obtain for the diagrams

I1 = −iλ

∫
dt

∫
dx

∑
σ1,σ2,σ3

(iG(0, 0))3 = −λ(in0)
3(2S + 1)3V T (34)

= iλn3
0(2S + 1)3V T (35)

I2 = −iλ(−n0)
3

∫
dt

∫
dx

∑
σ1,σ2,σ3

δσ1,σ2δσ2,σ3 = iλn3
0(2S + 1)V T (36)

I3 = −iλn3
0(2S + 1)2V T (37)

Summing up the contributions (taking into account the factors 1, 2, and 3 arising
from different contractions to obtain respective diagrams), we find

∆E =
i

T
(I1 + 2I2 + 3I3) (38)

= V λn3
0(2S + 1)

[
3− 2(2S + 1)− (2S + 1)2

]
. (39)

2. Hartree-Fock energy in real space (10 + 10 points)

Consider the Hartree and Fock interaction energies in real space and the effect of Pauli
repulsion.



(a) Consider a noninteracting ground state |g⟩ with Fermi momentum pF and a generic
repulsive interaction

V̂ =
1

2

∑
σσ

∫
d3x

∫
d3x′U(|x− x′|)ψ†

σ(x)ψ
†
σ′(x

′)ψσ′(x
′)ψσ(x), (40)

with U(r) > 0.

Express ⟨g|V̂ |g⟩ in terms of the equal-time correlation function

Cσσ′(x− x′) = ⟨g|ψ†
σ(x)ψ

†
σ′(x

′)ψσ′(x
′)ψσ(x)|g⟩. (41)

and identify the Hartree and Fock contributions. Calculate the spatial dependence
of Cσσ′(x− x′) for different spin combinations.

Solution:

⟨g|V̂ |g⟩ = 1

2

∑
σσ′

∫
d3x

∫
d3x′U(|x− x′|)⟨g|ψ†

σ(x)ψ
†
σ′(x

′)ψσ′(x
′)ψσ(x)|g⟩ (42)

=
1

2

∑
σσ′

∫
d3x

∫
d3x′U(|x− x′|)Cσσ′(x− x′) (43)

We can express the equal-time correlation function as a time-ordered product

Cσσ′(x− x′) = ⟨g|T ψ0,σ′(x
′, 0)ψ0,σ(x, 0)ψ

†
0,σ(x, 0

+)ψ†
0,σ′(x

′, 0+)|g⟩ (44)

= ⟨g|T U(t)ψ0,σ′(x
′, 0)U †(t)U(t)ψ0,σ(x, 0)U

†(t) (45)

× U(t)ψ†
0,σ(x, 0

+)U †(t)U(t)ψ†
0,σ′(x

′, 0+)U †(t)|g⟩ (46)

= ⟨g|T ψ0,σ′(x
′, t)ψ0,σ(x, t)ψ

†
0,σ(x, t+ 0+)ψ†

0,σ′(x
′, t+ 0+)|g⟩, (47)

where on the first line we have inserted trivial time-evolution operators and changed
into the interaction picture. On the second line we add time-evolution operators U
and translate them to time t. U ’s acting on |g⟩ and ⟨g| give scalars which cancel
each other.

Then we use Wick’s theorem to evaluate the expectation value in terms of non-
interacting Green’s functions:

Cσσ′(x− x′) = ⟨T ψ0,σ(x, t)ψ
†
0,σ(x, t+ 0+)⟩⟨T ψ0,σ′(x

′, t)ψ†
0,σ′(x

′, t+ 0+)⟩ (48)

− ⟨T ψ0,σ′(x
′, t)ψ†

0,σ(x, t+ 0+)⟩⟨T ψ0,σ(x, t)ψ
†
0,σ′(x

′, t+ 0+)⟩ (49)

= [iG(0, 0)]2 − δσσ′ [iG(x− x′, 0)][iG(x′ − x, 0)] (50)

= n2
0 + δσσ′G(|x− x′|, 0)2, (51)

where we used the fact that equal-time GF at a single point is in0, with electron
density n0. The first term, which does not depend on spin, gives the Hartree term
when combined with the interaction potential. The second term, which does depend
on spin, gives the Fock term.

We need to calculate the Green’s function in space-time representation. This is
different from what we calculated on sheet 1, where we calculated the retarded GF.



This is the time-ordered GF. The difference is in the positions of the poles.

G(k, t = 0−) =

∫
dε

e−iε0−

ε+ isgn(εk)0+ − εk
= iθ(εk) (52)

G(r, 0−) = i

∫
dk

(2π)3
θ(εk)e

ik·r =
i

2π2

∫ +1

−1

dx

∫ kF

0

dk k2eikrx (53)

= in0
3 [sin(kFr)− kF r cos(kFr)]

(kFr)3
= in0P (kFr), (54)

where εk = ℏ2k2/2m − µ with µ = εF, electron density is n0 = 2π2ℏ3k3F/3, and
P (x) = 3[sin x− x cosx]/x3. We find

Cσσ′(r) = n2
0(1− δσσ′P (kFr)

2). (55)

At zero P (0) = 1 and P decays with Friedel oscillations at the scale of k−1
F . The

correlation function behaves differently depending on whether the spins are equal
or not:

C↑↓(r) = n2
0. (56)

C↑↑(r) = n2
0(1− P (kFr)

2). (57)

If the interaction is repulsive, the interaction energy for equal spins is smaller than
for same spins because the short range potential is avoided by Pauli repulsion.
This creates a tendency towards ferromagnetic state which is explored in the next
subtask.

(b) Now assume a short-range interaction

U(x− x′) = U0δ(x− x′) (58)

and a spin-polarized ground state |P ⟩ with N↓ =
(
1−P
2

)
N0 spin-down electrons and

N↑ =
(
1+P
2

)
N0 spin-up electrons, where N0 is the total electron number. How does

the interaction energy depend on the polarization? Interpret the result.

Solution: Here we partially generalize the calculation for part (a) for the case in which
the zeroth order GFs for up and down spins are different. We start from Eq. (42) and
use the delta-function to simplify the integral:

⟨g|V̂ |g⟩ = U0

2

∑
σσ′

∫
d3x⟨g|ψ†

σ(x)ψ
†
σ′(x)ψσ′(x)ψσ(x)|g⟩

=
U0

2

∑
σσ′

(i)2 [Gσ(x− x, 0)Gσ′(x− x, 0)− δσσ′Gσ(x− x, 0)Gσ(x− x, 0)]

= −U0

2
[G↑G↑ +G↑G↓ +G↓G↑ +G↓G↓ −G↑G↑ −G↓G↓]

= −U0G↑G↓ = U0n↓n↑ = U0n
2
0(1− P )(1 + P ) = U0n

2
0(1− P 2)

(59)

The interaction energy is minimized when the system is completely polarized (P = ±1).
In this case the electrons completely avoid each other by Pauli repulsion, so that they
never get close enough to actually interact, and the interaction energy vanishes.



The interaction energy is not the only contribution to the internal energy. One should
also consider the kinetic energy of the electrons, given by the non-interacting Hamilto-
nian:

EK = ⟨P |H0|P ⟩ =

 ∑
|p|<pF↑

+
∑

|p|<pF↓

 p2

2m
, (60)

where |P ⟩ is the spin-polarized (ground) state. Finite polarization will increase the
total kinetic energy. If the kinetic energy cost of finite P is smaller than the interaction
energy, the system will magnetize spontaneously.


