Karlsruher Institut für Technologie – Institute for Condensed Matter Theory Institute for Quantum Materials and Technologies

Condensed Matter Theory II: Many-Body Theory (TKM II) SoSe 2023

PD Dr. I. Gornyi and Prof. Dr. A. Mirlin	Homework assignment 5
Dr. Risto Ojajärvi and Paul Pöpperl	Deadline: 26 May 2023

1. Hartree-Fock self-energy

(10 + 7 + 3 points)

Consider a three-dimensional system of interacting electrons at zero temperature. Derive carefully the following results, which are given in Sec. (3.12.2) of the lecture notes.

- (a) Calculate the Hartree and Fock self-energy for electrons interacting via Coulomb interaction $U(\mathbf{r}, \mathbf{r}') = \frac{e^2}{|\mathbf{r}-\mathbf{r}'|}$.
- (b) Calculate the same diagrams with screened Thomas-Fermi interaction $U(\mathbf{r}, \mathbf{r}') = \frac{e^2}{|\mathbf{r}-\mathbf{r}'|} \exp(-\kappa |\mathbf{r}-\mathbf{r}'|)$, where κ^{-1} is the screening length.
- (c) Calculate the effective mass

$$m^* = m \frac{1 - \frac{\partial}{\partial \epsilon} \operatorname{Re} \Sigma(\epsilon, \mathbf{p}) \Big|_{\epsilon=0, \, p=p_F}}{1 + \frac{\partial}{\partial \epsilon_p} \operatorname{Re} \Sigma(\epsilon, \mathbf{p}) \Big|_{\epsilon=0, \, p=p_F}},\tag{1}$$

for the Thomas-Fermi interaction. What happens at the limit of unscreened interaction, $\kappa \to \infty$?

2. Quasiparticle life-time in two dimensions (3 + 2 + 10 points)Consider a contact interaction $U(\mathbf{r} - \mathbf{r}') = g\delta(\mathbf{r} - \mathbf{r}')$ for spinful 2D electrons.

- (a) Write down all the self-energy diagrams to the second order in the interaction. Which diagrams contribute to the imaginary part of the self-energy?
- (b) Write the expression for the imaginary part of the self-energy. What changes relative to the 3D case, given by Eq. (3.271) in the lectures?
- (c) Estimate the quasi-particle lifetime. The result should be Eq. (3.276), but you do not need to calculate the prefactor.

3. Perturbation expansion for Fermi liquid interaction (15 points)

In Fermi liquid theory, the total energy of an excited state relative to the ground state energy is given by

$$E - E_0 = \sum_{\mathbf{p}\sigma} \varepsilon_{\mathbf{p}\sigma} \delta n_{\mathbf{p}\sigma} + \sum_{\mathbf{p}\sigma, \mathbf{p}'\sigma} f_{\mathbf{p}\sigma, \mathbf{p}'\sigma'} \delta n_{\mathbf{p}\sigma} \delta n_{\mathbf{p}'\sigma'}, \qquad (2)$$

where $\varepsilon_{\mathbf{p}\sigma}$ is the (renormalized) quasiparticle energy, $\delta n_{\mathbf{p}\sigma} = n_{\mathbf{p}\sigma} - n_{\mathbf{p}\sigma}^{(0)}$ is the difference between the occupation number $n_{\mathbf{p}\sigma}$ in an excited state and the ground state occupation number $n_{\mathbf{p}\sigma}^{(0)}$, and $f_{\mathbf{p}\sigma,\mathbf{p}'\sigma'}$ is the effective Fermi liquid interaction. The interaction can be divided into spin-dependent and spin-independent parts as

$$f_{\mathbf{p}\sigma,\mathbf{p}'\sigma'} = f^s_{\mathbf{p},\mathbf{p}'} + f^a_{\mathbf{p},\mathbf{p}'}\sigma\sigma'.$$
(3)

Consider the Hamiltonian

$$\hat{H} = \sum_{\mathbf{p}\sigma} \varepsilon_{\mathbf{p}\sigma} \hat{n}_{\mathbf{p}\sigma} + \frac{1}{2} \sum_{\mathbf{p}\sigma, \mathbf{p}'\sigma'} V(|\mathbf{q}|) c^{\dagger}_{\mathbf{p}-\mathbf{q},\sigma} c^{\dagger}_{\mathbf{p}'+\mathbf{q},\sigma'} c_{\mathbf{p}'\sigma'} c_{\mathbf{p}\sigma}.$$
(4)

To the first order in the perturbation theory, calculate the energy of the state

$$|\Psi\rangle = |n_{\mathbf{p}_1\sigma_1}, n_{\mathbf{p}_2\sigma_2}, \ldots\rangle \tag{5}$$

which is some excited state with $n_{\mathbf{p}\sigma}$ electrons in the single-particle states (\mathbf{p}, σ) . Compare the energy of this state to the noninteracting ground state. Identify the microscopic equivalents of the Landau interaction parameters f^s and f^a to the first order in the interaction. (*Hint: How to calculate the energy in the first order perturbation theory, given the interaction* \hat{V} ?)