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1. Plasmon dispersion in the hydrodynamic approximation (5+13+2=20
points)
Let us calculate the plasmon dispersion for a Fermi gas in the hydrodynamic limit. Use
the continuity equation

Op+V - (pu) =0, (1)

for the mass density p(r,t) = mn(r,t), where u(r,t) is the velocity distribution, m is
the electron mass and n is the electron number density. The force acting on the electron
distribution is given by the Euler equation

Oi(pu) = —enE — VP. (2)
where E is the electric field and P is the internal pressure of the Fermi gas.

(a) Due to Pauli repulsion, the pressure of a Fermi gas does not vanish at zero tempe-
rature. Use a suitable thermodynamic relation and calculate the pressure of a 3D
Fermi gas with a parabolic dispersion as a function of the electron density n at zero
temperature.

(b) Assume an external electric field Eey(r,t) = Ege!@~97) acting on the system.
Calculate the linear response of the electron density dn(q, w) to the external field. At
low frequency and long-wavelength limit, the induced electric field can be calculated
from the electric scalar potential ¢;,q which is determined by the Poisson equation

V2¢ind = 47T€5n7 (3)

where e > 0. The total electric field is E = E;q + Ecx, where E;,q is the induced
field given by Eq. (3). At long-wavelength limit the pressure can be calculated by
locally using the relation derived in subtask (a).

(¢) Determine the plasmon dispersion w = wp(q).

2. Plasmon dispersion relation from RPA (10 points)

In the lectures, the following expression was derived for the polarization bubble I1(q, w)
at zero temperature in three dimensions:

1
H(q,w)zy{l—glnztl] (4)
v + i0sign(w) (5)
qUur

where v is the density of states at the Fermi surface and vg is the Fermi velocity.
In the lectures, the plasmon frequency w,(¢ = 0) was calculated. Determine the plas-
monic dispersion relation w,(g) in the limit of small g.



3. Matsubara Sums (4+4+4+4+4 =20 points)

(a)

Find the poles and residues of the Fermi and Bose distribution functions
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assuming complex arguments z € C.

Consider an integral of the form

I:= jﬁdz ngr(z)h(z) (8)

where ng/p is the Bose / Fermi function, and fc dz an integral over a complex
contour C which encloses all poles of ng/p but no poles of h(z).

Use the residue theorem to express [ as a sum. Use your result to express a generic
Matsubara sum

S = % > h(iw,) (9)

in terms of a complex contour integral.

Calculate the Matsubara sum
1
S(r) := 3 Zg(iwn) exp(iw,T) 0<7<p (10)

where ¢(z) is holomorphic everywhere in C but on a countable number of points z;.
Further it holds g(2) lim.|e = 0.

Calculate the sum S(7) for both bosonic and for fermionic Matsubara frequencies
by choosing an appropriate contour C. You can assume that g(z) is of the form

9(:) = [[— (11)
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Calculate the Matsubara sums

S, = % S Go(k, i) explic,r) (12)
S2 = 5 37 Goll. )Gl + . + i) (13)
where B
Go(k,iw,) = ﬁ, Sk = €x — [, (14)
oy = (27‘%)”, vy — 27”7”. (15)

Consider sum (10) again. Assume, that g(z) is analytic everywhere, but on the real
axis. Choose an appropriate contour to express S(7) as an integral

S(r) = e/oo d—wnB/F(w)a(w)exp(WT) 0<7t<p (16)

oo 2T

where € = —1 for bosons, € = 1 for fermions, a(w) = i(g(w + 1) — g(w — 19)).



