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1. Plasmon dispersion in the hydrodynamic approximation (5 + 13 + 2 = 20
points)

Let us calculate the plasmon dispersion for a Fermi gas in the hydrodynamic limit. Use
the continuity equation

∂tρ+∇ · (ρu) = 0, (1)

for the mass density ρ(r, t) = mn(r, t), where u(r, t) is the velocity distribution, m is
the electron mass and n is the electron number density. The force acting on the electron
distribution is given by the Euler equation

∂t(ρu) = −enE−∇P. (2)

where E is the electric field and P is the internal pressure of the Fermi gas.

(a) Due to Pauli repulsion, the pressure of a Fermi gas does not vanish at zero tempe-
rature. Use a suitable thermodynamic relation and calculate the pressure of a 3D
Fermi gas with a parabolic dispersion as a function of the electron density n at zero
temperature.

(b) Assume an external electric field Eext(r, t) = E0e
i(ωt−q·r) acting on the system.

Calculate the linear response of the electron density δn(q, ω) to the external field. At
low frequency and long-wavelength limit, the induced electric field can be calculated
from the electric scalar potential ϕind which is determined by the Poisson equation

∇2ϕind = 4πeδn, (3)

where e > 0. The total electric field is E = Eind + Eext, where Eind is the induced
field given by Eq. (3). At long-wavelength limit the pressure can be calculated by
locally using the relation derived in subtask (a).

(c) Determine the plasmon dispersion ω = ωp(q).

2. Plasmon dispersion relation from RPA (10 points)

In the lectures, the following expression was derived for the polarization bubble Π(q, ω)
at zero temperature in three dimensions:

Π(q, ω) = ν
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(5)

where ν is the density of states at the Fermi surface and vF is the Fermi velocity.
In the lectures, the plasmon frequency ωp(q = 0) was calculated. Determine the plas-
monic dispersion relation ωp(q) in the limit of small q.



3. Matsubara Sums (4 + 4 + 4 + 4 + 4 = 20 points)

(a) Find the poles and residues of the Fermi and Bose distribution functions

nF(z) =
1

exp(zβ) + 1
(6)

nB(z) =
1

exp(zβ)− 1
(7)

assuming complex arguments z ∈ C.
(b) Consider an integral of the form

I :=

∮
C
dz nB/F(z)h(z) (8)

where nB/F is the Bose / Fermi function, and
∮
C dz an integral over a complex

contour C which encloses all poles of nB/F but no poles of h(z).
Use the residue theorem to express I as a sum. Use your result to express a generic
Matsubara sum

S :=
1

β

∑
ωn

h(iωn) (9)

in terms of a complex contour integral.

(c) Calculate the Matsubara sum

S(τ) :=
1

β

∑
ωn

g(iωn) exp(iωnτ) 0 ≤ τ < β (10)

where g(z) is holomorphic everywhere in C but on a countable number of points zj.
Further it holds g(z) lim|z|→∞ = 0.
Calculate the sum S(τ) for both bosonic and for fermionic Matsubara frequencies
by choosing an appropriate contour C. You can assume that g(z) is of the form

g(z) =
∏
j

1

z − zj
. (11)

(d) Calculate the Matsubara sums

S1 =
1

β

∑
ωn

G0(k, iωn) exp(iωnτ) (12)

S2 =
1

β

∑
ωn

G0(k, iωn)G0(k+ q, iωn + iωm) (13)

where

G0(k, iωm) =
1

iωn − ξk
, ξk = ϵk − µ, (14)

ωn =
(2n+ 1)π

β
, νm =

2mπ

β
. (15)

(e) Consider sum (10) again. Assume, that g(z) is analytic everywhere, but on the real
axis. Choose an appropriate contour to express S(τ) as an integral

S(τ) = ϵ

∫ ∞

−∞

dω

2π
nB/F(ω)a(ω) exp(ωτ) 0 < τ < β (16)

where ϵ = −1 for bosons, ϵ = 1 for fermions, a(ω) = i(g(ω + iδ)− g(ω − iδ)).


