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1. Plasmon dispersion in the hydrodynamic approximation (5 + 13 + 2 = 20
points)

Let us calculate the plasmon dispersion for a Fermi gas in the hydrodynamic limit. Use
the continuity equation

∂tρ+∇ · (ρu) = 0, (1)

for the mass density ρ(r, t) = mn(r, t), where u(r, t) is the velocity distribution, m is
the electron mass and n is the electron number density. The force acting on the electron
distribution is given by the Euler equation

∂t(ρu) = −enE−∇P. (2)

where E is the electric field and P is the internal pressure of the Fermi gas.

(a) Due to Pauli repulsion, the pressure of a Fermi gas does not vanish at zero tempe-
rature. Use a suitable thermodynamic relation and calculate the pressure of a 3D
Fermi gas with a parabolic dispersion as a function of the electron density n at zero
temperature.

Solution: Thermodynamically, pressure is defined as the volume derivative at fixed
temperature and particle number

P = − ∂F

∂V

∣∣∣∣
T=0,N

= − ∂U

∂V

∣∣∣∣
T=0,N

. (3)

The particle number and the internal energy of a 3D Fermi gas is

N = V
∑
σ

∫
|p|<pF

dp

(2π)3
= V

p3F
3π2

(4)

U = V
∑
σ

∫
|p|<pF

dp

(2π)3
p2

2m
= V

p5F
10π2m

(5)

The internal energy in terms of N is

U =
V

10π2m

(
3π2N

V

)5/3

=
(3π2N)5/3V −2/3

10π2m
(6)

The pressure is

P =
(3π2)2/3

5m

(
N

V

)5/3

. (7)



(b) Assume an external electric field Eext(r, t) = E0e
i(ωt−q·r) acting on the system.

Calculate the linear response of the electron density δn(q, ω) to the external field. At
low frequency and long-wavelength limit, the induced electric field can be calculated
from the electric scalar potential ϕind which is determined by the Poisson equation

∇2ϕind = 4πeδn, (8)

where e > 0. The total electric field is E = Eind + Eext, where Eind is the induced
field given by Eq. (8). At long-wavelength limit the pressure can be calculated by
locally using the relation derived in subtask (a).

Solution: The external electric field induces a change in the electron density
n(r, t). There are three effects in Eq. (2) which affect the dynamics of the electrons:
the inertia of the electrons, the induced electric field due to inhomogeneous charge
distribution, and the pressure gradients due to inhomogeous particle distribution.

We linearize the equations around the equilibrium density n0. In linear response, the
perturbation δn will occur at the same frequency and wavevector as the perturbing
field:

n(r, t) ≈ n0 + δn ei(ωt−q·r). (9)

The velocity field u vanishes at zeroth order:

u(r, t) ≈ δu ei(ωt−q·r). (10)

We are interested in the long-wavelength, low-frequency limit, so that we define a
local pressure which we can calculate from the relation of part (a) using the local
electron density. The variation of pressure and the pressure gradient are

P (q, ω) ≈ (3πn0)
2/3

3m
δn. (11)

The induced electric field is obtained by solving the Poisson equation:

Eind(q, ω) = −iqϕind = −4πeiq

q2
δn. (12)

Now the Euler equation can be written as

(iωmn0)δu = −en0

(
E0 −

4πeiq

q2
δn

)
+ iq

(3πn0)
2/3

3m
δn. (13)

We can eliminate q · δu in favor of δn by using the continuity equation, which tells
us that

ωδn = n0q · δu. (14)

Taking the dot product with q from both sides of Eq. (13) and using the continuity
equation, we find(

mω2 − 4πe2n0 − q2
(3πn0)

2/3

3m

)
δn = ien0q · E0. (15)

Solving for δn gives

δn =
ien0q · E0

mω2 − 4πe2n0 − q2 (3πn0)2/3

3m

(16)



(c) Determine the plasmon dispersion ω = ωp(q).

Solution: Above we find the response function δn = χ ·E0. Study the poles of the
response function to determine the dispersion.

The dispersion is given by

ω2 =
4πe2n0

m
+

(3πn0)
2/3

3m2
q2

=
4πe2νv2F

3
+

1

3π2/3
v2Fq

2.

(17)

2. Plasmon dispersion relation from RPA (10 points)

In the lectures, the following expression was derived for the polarization bubble Π(q, ω)
at zero temperature in three dimensions:

Π(q, ω) = ν

[
1− s

2
ln

s+ 1

s− 1

]
(18)

s =
ω + i0sign(ω)

qvF
(19)

where ν is the density of states at the Fermi surface and vF is the Fermi velocity.
In the lectures, the plasmon frequency ωp(q = 0) was calculated. Determine the plas-
monic dispersion relation ωp(q) in the limit of small q.

Solution: Assume ω > 0. We make an expansion in the limit q → 0 (which corresponds
to s → ∞):

Π(q =
ω + i0

svF
, ω) = ν

[
1− s

2
ln

s+ 1

s− 1

]
≈ − 1

3s2
− 1

5s4
. (20)

The plasma mode corresponds to a pole in the effective interaction

Ueff(q, ω) =
U(q)

1 + U(q)Π(q, ω)
=

U(q)

ϵ(q, ω)
(21)

We search for the pole

ϵ(q, ω) = 1 + U(q)Π(q, ω) = 1 +
4πe2ν

q2

[
− q2v2F
3(ω + i0)2

− q4v4F
5(ω + i0)4

]
= 1− 4πe2ν

q2v2F
3(ω + i0)2

− 4πe2ν
q2v4F

5(ω + i0)4

(22)

Setting ϵ(q, ω) = 0, we find the equation (neglecting the imaginary parts, which are not
that important here)

15ω4 − 20πe2νv2Fω
2 − 12πe2νq2v4F = 0, (23)

which can be straightforwardly solved for ω2. Expanding the solution in q, we find

ω2 ≈ 4πe2νv2F
3

+
3

5
v2Fq

2. (24)

3. Matsubara Sums (4 + 4 + 4 + 4 + 4 = 20 points)



(a) Find the poles and residues of the Fermi and Bose distribution functions

nF(z) =
1

exp(zβ) + 1
(25)

nB(z) =
1

exp(zβ)− 1
(26)

assuming complex arguments z ∈ C.
Solution: There is a pole in nϵ(z) = [exp(zβ) + ϵ]−1 when exp(zβ) = −ϵ. Writing
z = iω,

exp(iωβ) = −ϵ =

{
+1 Bosons

−1 Fermions
(27)

we find

ω = ωn =

{
2nπ/β, Bosons

(2n+ 1)π/β, Fermions
(28)

The residues are given by

Resz=iωn [nϵ(z)] = lim
z→iωn

(z − iωn)nϵ(z) = lim
z→iωn

z − iωn

exp(βz) + ϵ

= lim
z→iωn

z − iωn

������
exp(iβωn) + β exp(iβωn)(z − iωn) + �ϵ

= − 1

βϵ
=

{
+ 1

β
, Bosons

− 1
β
, Fermions

(29)

(b) Consider an integral of the form

I :=

∮
C
dz nB/F(z)h(z) (30)

where nB/F is the Bose / Fermi function, and
∮
C dz an integral over a complex

contour C which encloses all poles of nB/F but no poles of h(z).
Use the residue theorem to express I as a sum. Use your result to express a generic
Matsubara sum

S :=
1

β

∑
ωn

h(iωn) (31)

in terms of a complex contour integral.

Solution: Using the results from part (a), we find

I =

∮
C
dz nϵ(z)h(z) = 2πi

∑
zn∈Ω

Resz=zn [nϵ(z)]h(iωn)

= 2πi(−ϵ)
1

β

∑
ωn

h(iωn).

(32)

Turning the procedure the other way, we may write any Matsubara sum as a contour
integral

S =
1

β

∑
ωn

h(iωn) = (−ϵ)

∮
C

dz

2πi
nϵ(z)h(z), (33)

where C is any contour that encloses all the z = iωn in a counter-clockwise fashion.
h(z) must also be analytic for all z within the contour.



(c) Calculate the Matsubara sum

S(τ) :=
1

β

∑
ωn

g(iωn) exp(iωnτ) 0 ≤ τ < β (34)

where g(z) is holomorphic everywhere in C but on a countable number of points zj.
Further it holds g(z) lim|z|→∞ = 0.
Calculate the sum S(τ) for both bosonic and for fermionic Matsubara frequencies
by choosing an appropriate contour C. You can assume that g(z) is of the form

g(z) =
∏
j

1

z − zj
. (35)

Solution: Using the result from (b), we express the sum as a contour integral

S(τ) = (−ϵ)

∮
C

dz

2πi
nϵ(z)g(z)e

zτ − (−ϵ)
∑
j

∮
Dj

dz

2πi
nϵ(z)g(z)e

zτ , (36)

where the contour C is a large circle with radius R → ∞ enclosing all of complex
plane, and Dj are small circles around the poles of g(z). By the assumption, the
integral over the large circle vanishes, and we are left with the second term, which
can be evaluated using the Residue theorem.

We find
S(τ) = ϵ

∑
j

nϵ(zj)Resz=zj [g(z)]e
zjτ (37)

where the residues of g(z) are

Resz=zj [g(z)] =
∏
i ̸=j

1

zj − zi
. (38)

(d) Calculate the Matsubara sums

S1 =
1

β

∑
ωn

G0(k, iωn) exp(iωnτ) (39)

S2 =
1

β

∑
ωn

G0(k, iωn)G0(k+ q, iωn + iνm) (40)

where

G0(k, iωm) =
1

iωn − ξk
, ξk = ϵk − µ, (41)

ωn =
(2n+ 1)π

β
, νm =

2mπ

β
. (42)

Solution: Let us start with the first sum which is the Fourier expansion of a
Green’s function G0(k,−τ) with 0 < τ < β. G0 has a single pole on the real axis
at z1 = ξk with residue 1. Part (c) gives us

S1 =
1

β

∑
ωn

G0(k, iωn) exp(iωnτ) = nF(z1)e
z1τ = nF(ξk)e

ξkτ , (43)



Which is consistent with the definition of the thermal Green’s function

G0(k,−τ) = −⟨T ck(−τ)c†k(0)⟩ = ⟨c†kck⟩e
ξkτ .

In the next sum we have explicitly

G0(k, z)G0(k+ q, z + iνm) =
1

z − ξk

1

z + iνm − ξk+q

(44)

which has two poles, one at z1 = ξk with residue 1/(iνm − ξk+q + ξk), and another
at z2 = ξk+q − iνm with residue −1/(iνm − ξk+q + ξk). Using part (c) with τ → 0
gives

S2 =
nF(ξk)

iνm − ξk+q + ξk
− nF(ξk+q − iνm)

iνm − ξk+q + ξk

=
nF(ξk)− nF(ξk+q)

iνm − ξk+q + ξk
,

(45)

where we used for the Fermi function the fact that exp(βz + iβνm) = exp(βz + 2πni) =
exp(βz) for a bosonic Matsubara frequency νm.

(e) Consider sum (34) again. Assume, that g(z) is analytic everywhere, but on the real
axis. Choose an appropriate contour to express S(τ) as an integral

S(τ) = ϵ

∫ ∞

−∞

dω

2π
nB/F(ω)a(ω) exp(ωτ) 0 < τ < β (46)

where ϵ = −1 for bosons, ϵ = 1 for fermions, a(ω) = i(g(ω + iδ)− g(ω − iδ)).

Solution: We now choose the contour that consists of two infinite semicircles: C+
in the upper half-plane and C− in the lower half-plane. These two contours taken
together enclose all the Matsubara points. For fermionic frequencies, we have

S(τ) = (−ϵ)

(∮
C+

dz

2πi
nϵ(z)g(z)e

zτ +

∮
C−

dz

2πi
nϵ(z)g(z)e

zτ

)
. (47)

In the case of bosonic Matsubara frequencies, we have to single out the point ωn = 0:

S(τ) = Tg(0) + (−ϵ)

(∮
C+

dz

2πi
nϵ(z)g(z)e

zτ +

∮
C−

dz

2πi
nϵ(z)g(z)e

zτ

)
(48)

The arcs of the semicircles vanish because nϵ(z)e
zτ decays |z| → ∞. Only the parts

just above and below the real axis remain.

(−ϵ)

(∫ ∞+iδ

−∞+iδ

dz

2πi
nϵ(z)g(z)e

zτ +

∫ −∞−iδ

∞−iδ

dz

2πi
nϵ(z)g(z)e

zτ

)
(49)

= (−ϵ)

(∫ ∞

−∞

dω

2πi
nϵ(ω)g(ω + iδ)eωτ −

∫ ∞

−∞

dω

2πi
nϵ(ω)g(ω − iδ)eωτ

)
(50)

= ϵ

∫ ∞

−∞

dω

2π
nϵ(ω)i [g(ω + iδ)− g(ω − iδ)] eωτ (51)

= ϵ

∫ ∞

−∞

dω

2π
nϵ(ω)a(ω)e

ωτ (52)



This equation is useful e.g., when we want to express the electron density as

n(x) =
1

β

∑
ωn

G(iωn,x) =

∫
dω

2π
nF(ω)[G

R(ω,x)−GA(ω,x)]. (53)

We find that the density of states at position x is given by

N(ω,x) = GR(ω,x)−GA(ω,x). (54)


