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1. Electron-phonon self-energy in Matsubara formalism (10 + 5 = 15 points)

The electronic self-energy from electron-phonon interaction reads:
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(a) Transform the summation over bosonic frequency v, into a contour integral in the
complex energy plane and express the result as an integral over the momentum q
involving Fermi and Bose distribution functions.

Solution: Using the expressions for the free Green’s functions (from Sec. 4.7 of
the lecture notes):
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To rewrite the sum over bosonic frequencies v, as an integral, we consider
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where the contour integral vanishes for our integrand. We end up with
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Calculating the residues at 21 = wq, 20 = —wq and 23 = ep_q — iw,, we find
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(note that w, is a fermionic Matsubara frequency); and ng(—w) = —(1 + np(w))we
find

d? q) | 1-— -
S(p, wn) = / qd . nl?(“q) + 15 (Ep—q) 4 .nF<5p a) + n5(wq) (14)
(2m) iwn, + wq — Ep—q Wy, — Wq — Ep—q

(b) For a one-dimensional system with €, = p?/2m — u, calculate Im X% (p,w): Analyti-
cally continue 3(p,w,) from discrete Matsubara frequencies w, > 0 to a frequency
just above the real axis: iw, — w + i0, take the imaginary part and perform the
g-integration.

Solution: Analytic continuation:

SR (p, w) = / d'y ,, [no(ea) +n(epa) | 1= ne(Epa) tnnea)] 5
(2m)d W+ Wq — Ep—q + 10 W— Wq — Ep_q + 10

Taking the imaginary part, going to d = 1:
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since p > |w|, both d-functions have two roots; say ¢; and ¢, and g3 and g4.
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2. RKKY interaction in finite temperature (5+ 10410+ 5+ 5 = 35 points)

Let us consider two impurity spins embedded in a metal. If the spins are close enough,
they will interact with each other via the spin-polarization of the conduction electrons.
This effect is known as the Ruderman—Kittel-Kasuya—Yosida (RKKY) interaction.



An impurity spin in a free 3D Fermi gas interacts with the local electronic spin density
by means of the Hamiltonian

Himp = J5:5i(x = 0), (19)
where the local spin density operator is given by
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and ¥; is a component of the impurity spin-vector, which is treated as an external field
localized at x = 0.

Let us assume that J < 0, and determine the coupling between the two impurity spins.

(a) Determine the Matsubara Green’s function for a non-interacting 3D Fermi gas as
a function of position r and Matsubara frequency w,, at large distances (kgr > 1)
and for w, < Ef.

Solution: Gy(r,w,) in the limit kpr > 1:
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We expand the square root:
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(b) Calculate the spin susceptibility
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where the (thermal) trace is defined in lecture Eq. (4.106). (The calculation is similar
to that for 7' = 0 in exercise 3 (a) from sheet 6.)

Solution: We know from the lecture that Wick’s theorem works analogously to
T =0atT > 0, with the zero-temperature Green’s functions replaced by Matsubara
Green’s functions. Taking into account signs, we get
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(c) At finite temperature, find the static (w = 0) spin polarization s;(x) = (S;(x)) in
the electronic system at large distances away from a single impurity spin. Consider
the spin susceptibility in the limit 7" — 0. Show that the polarization oscillates as
a function of r and find the oscillation period.

Solution: The static spin polarization is given in terms of the retarded suscepti-
bility as

si(x,w = 0) = J [Ddg] L (xw=0)%; (29)

We calculate the (discrete) Fourier-transform of the Matsubara spin susceptibility:
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Since [D%LJ (r,7) = [D%LJ (r,7+ /) (as can be seen from the periodicity of the
Green’s functions), w,, is a bosonic Matsubara frequency.
In order to evaluate Eq. (31) in the limit rkp > 1, we use the corresponding
expression for the Matsubara Green’s function (26). We find
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Here, it is OK to use the small € expression for the Green’s function, since high ¢,
terms vanish exponentially in the sum. For obtaining the analytic continuation (to
find the retarded response function) we need the susceptibility at w, > 0. In this
case, the sum can be solved:
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Next, we need to perform the analytic continuation to find the retarded response
function. To this end, we consider the function
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which is analytic for z € C,. Furthermore, it holds F; ;(iw,) = [D%LJ_ (r,wp).
Therefore, the retarded spin susceptibility is given by
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Thus, the spin polarization at 7" — 0 is

2 mpr
7 ) =0)=J— B
sibw=0)=J5 505

cos(2pgr). (38)

From the cosine we get an oscillation with period 7/pp.

Study the temperature dependence of the spin polarization. What changes qualita-
tively as compared to the zero temperature case?

Solution: At finite temperature, we have
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This means that the oscillations are dampened exponentially with increasing tem-
perature.

Assume that there are two localized spins 3¢ and X5 at distance r from each other
(rkp > 1). The energy of the system will depend on the relative orientation of the
two spins and can be written as

E=K3 3%,

Calculate the coupling constant K between the two spins by evaluating (Himp)-
Solution: We have
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We thus find
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