KARLSRUHER INSTITUT FUR TECHNOLOGIE INSTITUTE FOR CONDENSED MATTER THEORY
INSTITUTE FOR QUANTUM MATERIALS AND TECHNOLOGIES

Condensed Matter Theory II: Many-Body Theory (TKM II) SoSe 2023

PD Dr. I. Gornyi and Prof. Dr. A. Mirlin Homework assignment 9
Dr. Risto Ojajirvi and Paul Pépperl Deadline: 30 June 2023
1. Fluctuation-dissipation theorem (54 10 = 15 points)

In linear response theory, fluctuation-dissipation theorem relates the fluctuations of an
observable to the dissipative part of a response function. An early form was first derived
by Einstein (1905) in the context of Brownian motion.

Let us derive the theorem using imaginary-time formalism. Let A be some observable,

and the interaction picture operator is defined as A(t) = eiHot/h fg—iHot/h for any t € C.

(a) Consider a noise correlation function S(t) = (A(t)A(0)), where the expectation
value denotes the thermal trace (---) = Tr [B’BHO X } . Show that the noise correlation
function satisfies the Kubo-Martin-Schwinger (KMS) relation

S(t) = S(—t — ihp). (1)

(b) Fourier transform the KMS relation and find the relation between S(w) and S(—w).

(c¢) Consider an external perturbation f which couples to A. The response function
which describes the effect of f on (A) is given by the Kubo formula (Eq. (4.107) in
the lectures)

DEA(t) = —iO(t)([A(t), A(0)]). (2)
Using Eqgs.(1) and (2), prove the fluctuation-dissipation theorem

S(w) = 2h[1 + coth(Bhw/2)] Im [DF ,(w)]. (3)
Solution:

(a) The Kubo-Martin-Schwinger condition is obtained by using the Heisenberg repre-
sentation and the cyclic property of the trace:

iH0(1+7',h;3)/h
——
S(ZL) . Tr |: —BHy ZH(]I‘/h A(O) 71H(]T/’1A(O):|
Tr |:€ZH0 (t+ihB) /rA (0)e deoefiHo(t+ihﬁ)/hA(0):|. ()

Ty [e BHo ,—~iHo f+tf/3)/fA( e iHo (t+ihB) /fA( )}
= (A(—t —ihB)A(0)) = S(—t — ihf)

(b) Let us make a Fourier transform and shift the integration contour. We assume that
S(t) vanishes at infinity so we do not need to include the vertical parts connecting



the two integration lines.

dte™tS(t)
dte™'S(—t — ihp)
= dse™ 5P G (s)
= eﬁ_ ﬁi’oS (—w).

This is the detailed balance condition.
(c) Let us define C' such that

C(1) = S {[AD), AO)) = —([A(-1), AO)]) = ~0(~1) "

C(1) = (A1), A)) = A0AO) ‘22_<A<—t>A<0>> _ 5 —225<—t> .
Ste) (o) 1o st

Clw) = 2% =Ty (uQZZ(XEh(ﬁhw/2)+-1 (8)

According to Kubo formula, the response function is D ,(t) = —20(t)C(t)/h.
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_ / dte OO (t) + / dte “1O(t) C/(—1) (9)
—C(t)
= L (DEy() ~ Dha(~w)) = ~ifiln D (v)

Combining the above two results, we obtain

S(w) = 2A[1 + coth(Bhw/2)] Im [DF , (w)]. (10)



Wick’s theorem from Gaussian integrals: (54 5 = 10 points)

(a) In the lectures, Gaussian integrals over complex fields x = (1, ...,zy) € CV with
the integration measure d(x',x) = vazl(dRe x; dlm x;) were discussed. Let A be an
N x N complex positive-definite matrix. The average is defined as

xI,x) (...) ex'4x
R )

Prove the Wick’s theorem for complex (“bosonic”) fields:

(T5,07, ... 0] gy Ty - Tp,) = Z (x5, p, (T, 0k, ) (2] Tk, ) (2)
permutations P
where the sum goes over permutations P = {p1,...,p,} of {1,...,n}.
Solution:

For simplicity, we assume that the matrix A is Hermitian; the proof can be extended
onto non-Hermitian matrices with a positive-definite Hermitian part (A + AT)/2.
The starting point is the definition of the function of the source vectors J; and Js,

Z[3] = Z[3,, 35 = / d(x!,x) e AxtTixtx Ty (3)

We notice that the denominator of the expectation value is given by Z[J = 0] and
differentiating with respect to the source variables (elements of vectors J 1 and Js)

leads to
AR}
%Jiﬂ] _ /d(XT,X> .’L';k efxTAerJJ{erfo.h’ (4)
0ZJ
aJ[;,i] - / d(x!, x) ;e Tz, (5)
Using these formulas for general averages, we get
. ok « 1
<£Uj1$j2 ce (Ejnll,‘klﬂka ce [Ekn> = Z[J — O]
0 0 0 0 0 0
X — - . . . Z[J] ) (6)
alek,n ajl’ka aJLk,l aJQ,]n aJ27j2 8;]2’]'1 J=0

The generating function (partition function in the presence of the sources) Z[J] can
be evaluated analytically, see Eq. (6.50) of the Lecture Notes and Appendix below:

o Tq-1 N
20 = el = — T (AT, Toml . 7
7] det(A)e det(A) exp [;ﬂ: 171( )lm 2, (7)



From this we see that

a%kaijz[‘” - af;k {8z,jZ[J]} - &?i‘k
{ ank [Z T (47,
=Z[J { Zsz ), > (A, Jom

Setting J = 0, we remove the second term in the curly brackets — the one coming
from 0Z[J]/0J},, and thus obtain Eq. (6.52) of the Lecture Notes:

(x;xk> - (Ail)kj' 9)

Now we consider the derivatives in the higher-order correlators in Eq. (6):

Z[J]}

As in the two-point correlator, Eq. (8), each derivative may act on the product of
square brackets or on Z[J], but the latter contribution vanishes at J = 0. Thus, we
are left with the product of the former terms, each giving a matrix element (A1) ;.
Since for a given k; we can find J7, in any of the square brackets in the product,
we generate all possible permutations of the second index in the matrix A~! and
should sum over all these permutations:

0 0 0 0 0 0
OJfy,  OJ7y, 007y, 0Jay, 0oy, 0

Z[J]

J=0

0 0 0 . _ . -
0T, 0T, 07, { [Z R 1)’”‘1] - [Z e

l1

ln

(10)
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N

0 - — —
8 det(A) Z (A 1)k17jP1 (A 1)k2,jp2 o (A 1)kijn ’ (11)

permutations P

which, combined with Eq. (9), proves Wick’s theorem.

(b) For Grassmann variables, the average is defined as

S, m) (.. e An
Jd(n*,n) e=n"An

Prove the Wick’s theorem for Grassmann (“fermionic”) fields:

()= (12)

s -, ) = >, sen(P) (g, )iy, ) - (03T, )

permutations P

(13)

where the sum goes over permutations P = {p1,...,p,} of {1,...,n}, and sgn(P)
is the sign of the permutation.



Solution:

We start with Eq. (6.79) of the Lecture Notes (see Appendix for the details of
derivation) and continue with

/ d(n*,n) exp (=T Ap + €T+ p*T€) = det(A)ef™ A€, (14)

This identity can be shown easily by remembering that the integral is shift-invariant
under n = 7 =n— A =gt =n* — AT

/al(n*7 n)exp (—n* " An + &y + ¢ — ¢TA)
— /d(n*, n) exp (—(77*T —&TATYA( - Ailf))
= /d(f;*,ﬁ) exp (—i*T A7j) = det(A) (15)

We can write generic n point functions as n-th derivatives of the partition function

Z[e* & = z[o,0]! /d(n*, n)exp (—n*"An+ &y + "),
Wiy - 15,5 = Ogz g, - Og; O, Z[€7, €], (16)

We then use Z[¢*,&] = e¢" A7 10 find, similarly to the derivation in subtask la:

MMy - -m5 mj) = Z sign(o)A;}n1 . .A;{% (17)

O’ESn

With (nfn;) = A;;', this demonstrates the validity of Wick’s theorem.

ij

2. Fermionic coherent states: (5+5+ 545 =20 points)
Prove the following identities introduced in the lecture for fermionic coherent states in
terms of Grassmann variables (Sec. 6.2.3 of Lecture Notes):

(a) Right action of a} and left action of aj:

0 0
a£|7l> = _59777;€|n> ) <77|ak = an: <77| . (18)
k

Solution:
The definition of the fermionic coherent state is:

In) = exp [— > nka;t] 10). (19)

Remembering that the terms under the sum commute with each other, we can pull
the sum out of the exponential. Then we can use that Grassman variables square
to zero and write:

in) =TT [1 = mai] 10) (20)

k



(c)

The creators/annihilators aL, ay, anticommute with the Grassman variables. There-
fore, the product nk/az, commutes with n, 0,, for k # k"

atlny = TT [1 = mwal.] [al = malal] TT [t —mal.] 10)

k'<k k<k'
=TI [t - meal] (<0 [t = mal] TT [t~ meal] 10
B <k k<k’
] 2y

The other equation follows by Hermitean conjugation and renaming to the other
set of independent variables 7;. Note the flipped sign since the derivative switches
place with a; once.

Overlap (here 7, and 1} are two sets of Grassmann variables):

() = exp (Z w;;nk) . (22)

Solution:
We can re-order the product, using that pairs of Grassman variables mutually com-

mute:
() = 0|H 1—awkH[ —nwal,| 10)

=0 H (1= ) (1= mal)] 0
0|H (1= @i = mal + vimaral) | 10). (23)

Then we can use that akaz = ni+1 and ng|0) = 0. Unpaired creators or annihilators
do not create overlap with (0:

= (O TT (x + wime] [0)
k
= H (1 + ]

= exp [Z ?/)Zﬁk] : (24)

Completeness:
/D(n*,n)exp [—Znim] m{nl =1 with D(n*,n) Hdn]dm- (25)
k

Solution:
We put the definitions of the coherent state into the equation:

/ DO T 1=t TT [t =l /O TT - o] 20



Then we rewrite the products as sums over series {ny }, with n; € {0,1}:

H[ 77k177k1 Z H — k) 1 o

k1 {np}x k
I = mian) = D T (—npan)™ . (27)
k3 {nkte K

We therefore have to sum over three distinct series, one for each sum. In the Grass-
man integral only terms with all variables contribute:

/Dn m > T (=)™ "’“H( %%) OIH —a )" (28)
{np}r k ko

We re-order 1 and a. The —n* variables move past a and thus flip the sign; the n
variables pass bilinear combinations of a'n and do not change sign:

/Dn m > T ”’“H(—nw;’i)""‘ﬂ(%J 0!H 2"
{nx}tr k k )
This can be written as
/ 2 [T (i) - 3 [l (30)
{ne}e

which is easily recognized as a partition of unity in particle number basis after the
integral evaluates to one.

Trace of an arbitrary operator A in terms of coherent-state matrix elements:
Ted = [ Dl e Sl Al). (31)

Solution:
First, we need to show auxiliary identities:

T (In)(nlA) = (=] Aln) (32)
{natrln) = H(—Uk)nk (33)
il = T (i)™ (34)

We take the trace and use the occupation number basis. We then insert unity. We
can label a complete and orthogonal states by the occupation numbers:

Te ()l A) = > kel | D2 Howrbeo) (T hiol | Al

{nK}w {np }

=) el l{nw i) dnw d ol Al {rcbe)

{nite {np b

=Y > (=l i) G b | A ni ) ({nicdelm) (35)

{nrtr {ng tpr



When moving the matrix elements of coherent states (34) past each other, we pick
up a (—1)2x"™. This means (—1)2«" (n|{ny}x) = [, 7™ = (=n|{n}x).
Now we employ the identity from above and use the linearity of the integrals:

TrA = / D(n",n) exp

= /D(n*,n) exp

= i
k J

= i
k i

T (n){nlA)

~

{(=nlAln). (36)



Appendix la
Here we demonstrate in detail how Eq. (7) is derived. Since the matrix A is diagonalizable,
writing A = UTDU, we get

Z[J] — /d(XT’X) efxTUTDUx+J§x+xTJ2. (96)

Next, we define y = Ux and, since U is unitary, the functional determinant of this trans-
formation has the absolute value 1. Then we get

Z[3) = / d(y',y) e ¥ DYtV U3 (97)

In order to get rid of the linear terms we define again new integration variables y =
z+ D 'UJ, and yt = 2t + JIUT D

R (98)
Note that this does not require J; = J,, because we integrate over the imaginary and the
real part independently, which is equivalent to integrating over the complex vector and its
conjugate independently.

Now we recall that A = UTDU < A~' = UTD~'U and express the integral through the
components of the vectors

N~~~
Dij OC&L 1

N N
Z[J) = eJIAlJQ/H(dRe zidlm z;) e~ Zu# Doz = eJIAlJQ/H(dRe 2 dIm z;) e~ 2% Dz
i=1 ; i=1

N N
— AT H/<dRe 2 dlm z;) e Pl = et H/(dRe 2 dlm z;) e~ Pille )% +m (20)7]
i=1 =1

- N
) eJ’{A—lJz H / dRe e—DiiRe(zi)Z /dlm % e—Dn'Im(zZ')2 — eJIA—1J2 H \/DT\/DT
I1 piey i 1
(99)

Since A is positive definite it has positive eigenvalues and we get

7.[.N

det(A)’

Z[3] = A1 (100)



Appendix 1b
Here, we demonstrate how Eq. (6.79) of the Lecture Notes,

/d(n*, 1) exp (—n*TAn) = det(A), (101)

is derived. For this purpose we expand the exponential and keep only the N-th order term.
Only this order can contribute under the integral:

N N
(=T Anp)Y = D> Aimg) - (i A i)
i1,J1=1 iN,JN=1

NI

N N
<H AO’ka) H (_nzznﬁ“)
or€Sy \k=1 k=1
N
= Z sign(7)sign(o (H Aak'rk> H —15." )

o,TESN k=1
=) det(A H —niTn) - (102)
TESN k=1

We are left with the sum over 7 that gives a factor V! which is cancelled since it is the
N-th order of the expansion.



