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1. Effective action for electron-phonon system (5 + 10 + 2 + 8 = 25 points)

Consider electrons interacting with phonons. The system is described by the Hamilton
operator Ĥ = Ĥel + Ĥph + Ĥel−ph, where

Ĥel =
∑
p

ϵp a
†
pap , Ĥph =

∑
q

ωq b
†
qbq , (1)

describe free electrons and phonons, and

Ĥel−ph = g
∑
p,q

a†pap+q i
√
ωq (bq − b†−q) (2)

describes the electron-phonon interaction. In this task, we express the partition function
of the system, as well as Green’s functions, as functional integrals.

(a) Express the partition function of the system as a functional integral over fermionic
and bosonic fields.

Solution: The definition of the partition function is

Z = Tr[exp(−β(H − µN))]. (3)

Here, we have to trace over all electronic and all phononic states. As a basis, we use
the coherent states in analogy to the lecture

Z =

∫
D(ϕ∗, ϕ) exp

(
−
∑
l

ϕ∗
l ϕl

)∫
D(η∗, η) exp

(
−
∑
k

η∗kηk

)
× (4)

× ⟨ϕ,−η| exp(−β(H − µN)) |ϕ, η⟩ . (5)

Here ϕ are the bosonic- and η the fermionic states. As the chemical potential of the
phonons is zero we have µN → µNel. Calculating the expectation value in analogy
to the lectures, we find

Z =

∫
η(∗)(β)=−η(∗)(0)

D(η, η∗)

∫
ϕ(∗)(β)=ϕ(∗)(0)

D(ϕ, ϕ∗) exp(−S[η, η∗, ϕ, ϕ∗]) (6)

with the action

S[η, η∗, ϕ, ϕ∗] =

∫ β

0

dτ

[∑
k

η∗k(τ)(∂τ − µ)ηk(τ) +
∑
l

ϕ∗
l (τ)∂τϕl(τ) +H(η∗(τ), η(τ), ϕ∗(τ), ϕ(τ))

]
(7)



As the Hamiltonian is given in momentum representation, we use momentum to
label the single particle states. Explicitly,

H(η∗(τ), η(τ), ϕ∗(τ), ϕ(τ)) =
∑
p

ϵpη
∗
p(τ)ηp(τ) +

∑
q

ωqϕ
∗
q(τ)ϕq(τ)+ (8)

+ g
∑
p,q

η∗p(τ)ηp+q(τ)i
√
ωq(ϕq(τ)− ϕ∗

−q(τ)). (9)

Note that any unitary transformation of the fields (for example ϕ(r, τ) → ϕ(q, τ))
leaves the integration measure (Dϕ) unchanged after the corresponding substitution;
as the modulus of the determinant of a unitary matrix (and thus of the Jacobian)
is 1.

(b) Integrate out the bosonic field configurations in the partition function to derive an
effective action for fermions

Solution: The action is quadratic in the bosonic fields ϕ, ϕ∗. Therefore, we can
use Eq. (6.50) from the lecture notes to “integrate them out” (solve the integrals
over ϕ, ϕ∗):

I :=

∫
D(ϕ, ϕ∗) exp

(
−
∫ β

0

dτ
∑
l

ϕ∗
l (τ)(∂τ + ωq)ϕl(τ) + g

∑
q

ρq(τ)i
√
ωq(ϕq(τ)− ϕ∗

−q(τ))

)
(10)

where we introduced ρq(τ) :=
∑

p η
∗
p(τ)ηp+q(τ). To deal with the derivative, we

express the fields through their Matsubara Fourier transforms:∫ β

0

dτ ϕ∗
l (τ)(∂τ + ωq)ϕl(τ) =

1

β

∑
ωn

ϕ∗
l (ωn)(−iωn + ωq)ϕl(ωn) (11)∫ β

0

dτ ρq(τ)ϕq(τ) =
1

β

∑
ωn

ρq(−ωn)ϕq(ωn) (12)∫ β

0

dτ ρq(τ)ϕ
∗
−q(τ) =

1

β

∑
ωn

ρq(ωn)ϕ
∗
−q(ωn) (13)

All introduced Matsubara frequencies are bosonic.
We also change the integration measure to integrate over all ϕq(ωn), . . . instead of
all ϕq(τ), . . .. The integral reads now (using the same symbol for the integration
measure)

I =

∫
D(ϕ, ϕ∗) exp

(
− 1

β

∑
ωn,q

[
ϕ∗
q(ωn)(−iωn + ωq)ϕq(ωn) + gρq(ωn)i

√
ωq(ϕq(−ωn)− ϕ∗

−q(ωn))
])

(14)

Applying (6.50) (A is diagonal, with entries (using (6.56) from the lecture) A−1
q,ωn

=

−β(−iωn +ωq)
−1, J†

1(q, ωn) = −β−1ig
√
ωqρq(−ωn), J2(q, ωn) = β−1ig

√
ωqρ−q(ωn))

we find

I = C exp

(
−g

2

β

∑
q

∑
ωn

ωqρq(−ωn)ρ−q(ωn)

−iωn + ωq

)
(15)



where C is a constant. We obtain for the effective action for the fermions

Seff [η, η
∗] =

∑
q

[∑
νn

η∗q(νn)(ϵq − iνn − µ)ηq(νn)−
∑
ωn

g2

β

ωqρq(−ωn)ρ−q(ωn)

−iωn + ωq

]
+ log(C)

(16)

ρq(ωn) =
∑
σ

∫
d3p

1

β

∑
νm

η∗p(νm)ηp+q(νm + ωn). (17)

νm is a fermionic Matsubara frequency.

(c) Derive the free electron Green’s function from the partition function for non-interacting
electrons. Introduce source fields in the action and take derivatives of the partition
function with respect to them.

Solution: The partition function of the non-interacting electrons is

Zel =

∫
D(η, η∗) exp

(
−
∫ β

0

dτ
∑
q

η∗q(τ)(ϵq + ∂τ − µ)ηq(τ)

)
. (18)

To obtain the Green’s function, we introduce “source fields” J (1)(q, τ), J (2)(q, τ)
(similar to the derivation of Wick’s theorem from sheet 9) and define

Zel[J
(1), J (2)] :=

∫
D(η, η∗) exp

(
−
∫ β

0

dτ
∑
q

η∗q(τ)(ϵq + ∂τ − µ)ηq(τ)

)
× (19)

× exp

(∫ β

0

dτ
∑
q

(
η∗q(τ)J

(1)(q, τ) + ηq(τ)J
(2)(q, τ)

))
(20)

with Zel = Zel[J
(1) = 0, J (2) = 0]. We can now see, that

G(0)(q1, τ1;q2, τ2) = −⟨Tτaq1(τ1)āq2(τ2)⟩ (21)

= − 1

Zel

∫
η(0)=−η(β)

D(η, η∗)ηq1(τ1)η
∗
q2
(τ2)× (22)

× exp

(
−
∫ β

0

dτ
∑
q

η∗q(τ)(ϵq + ∂τ − µ)ηq(τ)

)
(23)

= − 1

Zel[J (1) = 0, J (2) = 0]

∂2Zel[J
(1), J (2)]

∂J (2)(q1, τ1)∂J (1)(q2, τ2)

∣∣∣∣
J(1)=0,J(2)=0

.

(24)

Here and in the following we use the symbol G(0) for the free electronic Green’s
function.



Using Eq. (6.80) of the lecture notes, we can evaluate Zel[J
(1), J (2)]:

Zel[J
(1), J (2)] =

∫
D(η, η∗) exp

(
−
∫ β

0

dτ
∑
q

η∗q(τ)(ϵq + ∂τ − µ)ηq(τ)

)
× (25)

× exp

(∫ β

0

dτ
∑
q

(
η∗q(τ)J

(1)(q, τ) + ηq(τ)J
(2)(q, τ)

))
(26)

=

∫
D(η, η∗) exp

(
−
∑
νn

∑
q

η∗q(νn)(ϵq − iνn − µ)ηq(νn)

)
× (27)

× exp

(∑
νn

∑
q

(
η∗q(νn)J

(1)(q, νn) + ηq(νn)J
(2)(q, νn)

))
(28)

= C exp

(∑
q

∑
νn

J (1)(q, νn)J
(2)(q, νn)

ϵq − iνn − µ

)
(29)

= C exp

(∑
q

∑
νn

∫ β

0

dτ1

∫ β

0

dτ2 exp(iνn(τ1 − τ2))
J (2)(q, τ1)J

(1)(q, τ2)

ϵq − iνn − µ

)
(30)

where C is a constant. Thus

G(0)(q1, τ1;q2, τ2) = −
∑
νn

exp(iνn(τ1 − τ2))
δ(q1 − q2)

ϵq − iνn − µ
. (31)

As expected we obtain the familiar Green’s function of free electrons.

(d) Expand the partition function to first order in g2 and derive an expression for the
lowest-order correction to the fermionic Green’s function induced by the electron-
phonon interaction.

Solution: We have

Z =

∫
D(η, η∗) exp(−Seff) (32)

Seff [η, η
∗] =

∑
q

[∑
νn

η∗q(νn)(ϵq − iνn − µ)ηq(νn)−
g2

β

∑
ωn

ωqρq(−ωn)ρ−q(ωn)

−iωn + ωq

]
+ log(C)

(33)

:= Sel + Sint (34)

g only appears in the interaction. We thus get

Z ≈
∫

D(η, η∗) exp(−Sel)(1− Sint) (35)

:= Z(0) + Z(2) (36)

We ignore the constant, as it cancels in the Green’s function. The electronic Green’s
function is approximately:

G(2)(q1, τ1;q2, τ2) ≈ − 1

Z(0) + Z(2)

∫
D(η, η∗)ηp1(τ1)η

∗
p2
(τ2) exp(−Sel) (1− Sint)

(37)



Expanding to second order in g consistently:

G(2)(q1, τ1;q2, τ2) = − 1

Z(0)

(∫
D(η, η∗) exp(−Sel)ηp1(τ1)η

∗
p2
(τ2) [1− Sint]− (38)

−Z
(2)

Z(0)

∫
D(η, η∗) exp(−Sel)ηp1(τ1)η

∗
p2
(τ2)

)
(39)

= G(0)(q1, τ1;q2, τ2) +
1

Z(0)

∫
D(η, η∗) exp(−Sel)ηp1(τ1)η

∗
p2
(τ2)Sint−

(40)

− Z(2)G(0)(q1, τ1;q2, τ2) (41)

For the second equality we identified the free electronic Green’s function G(0) we
calculated before.
We calculate the remaining expectation values using Wick’s theorem.

Z(2) =

∫
D(η, η∗) exp(−Sel)Sint (42)

= −g
2

β

∫
d3q
∑
ωn

ωq

−iωn + ωq

∫
D(η, η∗) exp(−Sel)ρq(−ωn)ρ−q(ωn) (43)

∫
D(η, η∗) exp(−Sel)ρq(−ωn)ρ−q(ωn) = (44)

=
1

β2

∑
νm,νn

∫
d3p

∫
d3p′

∫
D(η, η∗) exp(−Sel)η

∗
p(νn)ηp+q(νn + ωm)η

∗
p′(νm)ηp′−q(νm − ωm)

(45)

= Z(0) 1

β2

∑
νm,νn

∫
d3p

∫
d3p′ ⟨η∗p(νn)ηp+q(νn + ωm)η

∗
p′(νm)ηp′−q(νm − ωm)⟩ (46)

where the expectation value is calculated with respect to the free fermionic action.
Thus, the result after applying Wick’s theorem is a sum of products of free electron
Green’s functions corresponding to all combinations of pairwise contractions. We
do not write them down, because they cancel against the corresponding terms from
the Wick-decomposition of the second second order term

1

Z(0)

∫
D(η, η∗) exp(−Sel)ηp1(τ1)η

∗
p2
(τ2)Sint. (47)

This is just as expected; disconnected terms cancel in the expansion. We calculate



the remaining connected terms:

1

Z(0)

∫
D(η, η∗) exp(−Sel)ηp1(τ1)η

∗
p2
(τ2)Sint = (48)

= − g2

β3

∑
νl,νo

exp(iνlτ1) exp(−iνoτ2)

∫
d3q
∑
ωn

ωq

−iωn + ωq

∑
νm,νn

∫
d3p

∫
d3p′ × (49)

× ⟨η∗p(νn)ηp+q(νn + ωn)η
∗
p′(νm)ηp′−q(νm − ωn)ηp1(νl)η

∗
p2
(νo)⟩ (50)

= − g2

β3
δ(p2 − p1)

∑
νl,νo

δνl,νo exp(iνlτ1) exp(−iνoτ2)G
(0)(p2, νo)G

(0)(p1, νl)× (51)

×
∫

d3q
∑
ωn

ωq

−iωn + ωq

∑
νn

∫
d3p (disc− (52)

− δ(q)δνn,0G
(0)(p, νn) +G(0)(p1 − q, νl − ωn) +G(p1 + q, νl + ωn)−G(0)(p, νn)δ(q)δνn,0

)
(53)

= − g2

β3
δ(p2 − p1)

∑
νl,νo

δνl,νo exp(iνlτ1) exp(−iνoτ2)G
(0)(p2, νo)G

(0)(p1, νl)× (54)

×
∫

d3q
∑
ωn

ω2
q

ω2
n + ω2

q

∑
νn

∫
d3p

(
disc− δ(q)δνn,0G

(0)(p, νn) +G(0)(p1 − q, νl − ωn)
)

(55)

Identifying the free phononic Green’s function, we obtain

G(2)(p1, τ1;p2, τ2) =
g2

β3
δ(p2 − p1)

∑
νl,νo

δνl,νo exp(iνl(τ1 − τ2))[G
(0)]2(p1, νl)× (56)

×
∫

d3q d3p
∑
ωn,νn

G
(0)
ph (q, ωn)

(
δ(q)δνn,0G

(0)(p, νn) +G(0)(p1 − q, νl − ωn)
)
.

(57)

2. Hubbard-Stratonovich transformation (1 + 7 + 7 + 2 + 3 + 5 = 25 points)

Assume that we have a general electron-electron interaction

H int(ψ∗, ψ) =
1

2

∑
abcd

Vad,bcψ
∗
aψ

∗
bψcψd, (58)

where a, b, c, d refer to e.g. spin σ and space-time coordinates (r, τ) or (p, ωn). Within
the path integral, we can introduce some suitable set of bilinear operators ρn = ψ∗

aψd

and ρm = ψ∗
bψc to write the interaction as

H int(ψ∗, ψ) =
1

2

∑
nm

ρnVnmρm. (59)

It is then possible to introduce a new (real) bosonic field ϕ, and express the interaction
as

exp

(
−1

2

∑
nm

ρmVmnρn

)
= N

∫
Dϕ exp

(
−1

2

∑
nm

ϕmV
−1
mnϕn −

∑
m

iϕmρm

)
, (60)



where the prefactor N does not contain any fields and does not affect the dynamics.
This is similar to using Eq. (6.55) in reverse. However, we have introduced an extra
imaginary unit to obtain the negative sign on the left-hand side. This is necessary in case
of repulsive interaction (Vnm > 0). For an attractive interaction we can use Eq. (6.55)
as it stands.

The equation (60) is known as the Hubbard-Stratonovich transformation, and it allows
us to express any electron-electron interaction as an interaction between an electron
and a Gaussian bosonic field ϕ. The transformation is exact; new action is completely
equivalent to the original one, but does not contain a quartic electronic term anymore.
The price we pay is that there is an extra field with its own dynamics. The power of
the Hubbard-Stratonovich transformation comes from the fact that it allows us to make
approximations systematically.

Let us study the fermionic action for electrons interacting through the Coulomb po-
tential, and use the Hubbard-Stratonovich transformation to derive the effective RPA
interaction between the electrons.

(a) To begin, write down the action for electrons interacting via the Coulomb potential.

Solution: See also Altland-Simons book about this task (parts of the solutions
are based on the corresponding discussion in this book). According to lecture Eq.
(6.100), the action functional for fermions has the form

S[ψ, ψ∗] =

∫ β

0

dτ

[∑
k

ψ∗(τ)(∂τ − µ)ψk(τ) +H(ψ∗(τ), ψ(τ))

]
(61)

H(ψ∗(τ), ψ(τ)) := H({ψk(τ)}, {ψ∗
k(τ)}) (62)

We label single-particle states by position and spin:

k = (r, σ) (63)

The Hamilton reads

H =
∑
σ

∫
d3p

[
p2

2m
a†p,σap,σ

]
+

1

2

∑
σ,σ′

∫
d3r d3r′ ψ†

σ(r)ψ
†
σ′(r

′)U(r− r′)ψσ′(r′)ψσ(r)

(64)

= −
∑
σ

∫
d3r

[
ψ†
σ(r)

∇2

2m
ψσ(r)

]
+

1

2

∑
σ,σ′

∫
d3r d3r′ ψ†

σ(r)ψ
†
σ′(r

′)U(r− r′)ψσ′(r′)ψσ(r)

(65)

where U(r− r′) = e2

|r−r′| . As H is normal ordered, the function H({ψk(τ)}, {ψ∗
k(τ)})

is found by replacing the operators ψ† and ψ by complex variables ψ∗ and ψ. We
thus find the action

S[ψ, ψ∗] =
∑
σ

∫ β

0

dτ

∫
d3r ψ∗

σ(r, τ)

(
∂τ −

∇2

2m
− µ

)
ψσ(r, τ)+ (66)

+
∑
σ,σ′

∫ β

0

dτ

∫
d3r

∫
d3r′ ψ∗

σ(r, τ)ψ
∗
σ′(r′, τ)U(r− r′)ψσ′(r′, τ)ψσ(r, τ).

(67)



(b) For the Coulomb interaction, make a Hubbard-Stratonovich transformation by in-
troducing a bosonic field ϕ that couples to the electron density

ρ(q, τ) =
∑
p,σ

ψ∗
σ(p, τ)ψσ(p+ q, τ). (68)

Solution: We start by writing the interaction part of the action in Fourier space:

Sint :=
1

2

∑
σ,σ′

∫ β

0

dτ

∫
d3r

∫
d3r′ ψ∗

σ(r, τ)ψ
∗
σ′(r′, τ)U(r− r′)ψσ′(r′, τ)ψσ(r, τ) (69)

=
1

2

∑
σ,σ′

∫ β

0

dτ

∫
d3r

∫
d3r′ ψ∗

σ′(r′, τ)ψσ′(r′, τ)U(r− r′)ψ∗
σ(r, τ)ψσ(r, τ) (70)

=
1

2

∫ β

0

dτ

∫
d3r

∫
d3r′

∫
d3p′

∫
d3p exp(ipr) exp(ip′r′)× (71)

× ρ(p, τ)U(r− r′)ρ(p′, τ) (72)

=
1

2

∫ β

0

dτ

∫
d3r′

∫
d3p′

∫
d3p exp(i(p+ p′)r′)ρ(p, τ)

4πe2

p2
ρ(p′, τ) (73)

=
1

2

∫ β

0

dτ

∫
d3p ρ(p, τ)

4πe2

p2
ρ(−p, τ) (74)

We can now perform the Hubbard-Stratonovich transformation as described. The
“matrix elements” of the potential are V ((p, τ), (p′, τ ′)) = δ(p + p′)δ(τ − τ ′)4πe

2

p2 .

Using the definition of the inverse function (6.56) from the lecture, we find that

V −1((p, τ), (p′, τ ′)) = δ(p+ p′)δ(τ − τ ′) p2

4πe2
. We thus have

exp

(
−1

2

∫ β

0

dτ

∫
d3p ρ(p, τ)

4πe2

p2
ρ(−p, τ)

)
= (75)

= N
∫

Dϕ exp
(
−
∫ β

0

dτ

∫
d3p

[
1

2
ϕ(p, τ)

p2

4πe2
ϕ(−p, τ) + iϕ(p, τ)ρ(p, τ)

])
(76)

(c) After the Hubbard-Stratonovich transformation, the electronic action is quadratic.
Integrate out the fermions using Eq. (6.80) and obtain an effective action Seff [ϕ]
that only includes the field ϕ as a variable.

Solution: The part of the action containing electron fields reads

Sferm =
∑
σ

∫ β

0

dτ

∫
d3r ψ∗

σ(r, τ)

(
∂τ −

∇2

2m
− µ

)
ψσ(r, τ)+ (77)

+

∫ β

0

dτ

∫
d3p iϕ(p, τ)ρ(p, τ) (78)

We use ∫
d3p ϕ(p, τ)ρ(p, τ) =

∫
d3r′ ϕ(r′, τ)ρ(r′, τ) (79)

where

ρ(r′, τ) =
∑
σ

ψ∗
σ(r

′, τ)ψσ(r
′, τ) (80)



to write this action as

Sferm =
∑
σ

∫ β

0

dτ

∫
d3r ψ∗

σ(r, τ)

(
∂τ −

∇2

2m
− µ+ iϕ(r, τ)

)
ψσ(r, τ) (81)

=

∫
d3q d3q′

∑
νn,νm

× (82)

× ψ∗
σ(q, νn)

[(
−iνm +

q2

2m
− µ

)
δνn,νmδ(q− q′) + iϕ(q− q′, νn − νm)

]
ψσ(q, νm)

(83)

νn, νm are fermionic Matsubara frequencies. Now we use (6.80) from the lecture
notes and obtain a contribution for the effective action∫

D(ψ, ψ∗) exp(−Sferm) = det

[(
−iνm +

q2

2m
− µ

)
δνn,νmδ(q− q′) + iϕ(q− q′, νn − νm)

]
.

(84)

We obtain the effective action for the Hubbard-Stratonovich field

Seff [ϕ] =

∫ β

0

dτ

∫
d3p

[
1

2
ϕ(p, τ)

p2

4πe2
ϕ(−p, τ)

]
− log(det [A]) (85)

An,m(q,q
′) :=

(
−iνm +

q2

2m
− µ

)
δνn,νmδ(q− q′) + iϕ(q− q′, νn − νm) (86)

using the identity (6.122) from the lecture, this can be rewritten as

Seff [ϕ] =

∫ β

0

dτ

∫
d3p

[
1

2
ϕ(p, τ)

p2

4πe2
ϕ(−p, τ)

]
− Tr(log [A]) (87)

=

∫ β

0

dτ

∫
d3p

[
1

2
ϕ(p, τ)

p2

4πe2
ϕ(−p, τ)

]
−
∑
νn

∫
d3q log [A] (q, νn;q, νn).

(88)

(d) The dominant contribution to the functional integral comes from the vicinity of the
minimum of the action Seff [ϕ]. Find the minimum by taking a functional derivative

δSeff [ϕ]

δϕ
= 0. (89)

The minimum corresponds to the mean-field value of the field ϕ.

Solution: To take the functional derivative, we use Eq. (6.128) from the lecture:
Matrix A depends on parameters {ϕ(q, ωn)} and according to this equation we can
evaluate the derivative with respect to a parameter as

∂z Tr(f(A)) = Tr[f ′(A)∂zA] (90)

We find

∂Seff [ϕ]

∂ϕ(q, ωl)
=

([
q2

4πe2
ϕ(−q, ωl)

]
− (91)

−i
∑
νn,νm

∫
d3p

∫
d3p′ [A−1](νn,p; νm,p

′)δ(q− (p′ − p))δωl,νm−νn

)
(92)

=

([
q2

4πe2
ϕ(−q, ωl)

]
− i
∑
νn

∫
d3p [A−1](νn,p; νn − ωl,p− q)

)
(93)



We make an Ansatz of a constant (in space-time space) solution:

ϕ0(q, ωm) := Cδ(q)δωm,0 (94)

This diagonalizes A:

An,m(q,q
′) = δ(q− q′)δνn,νm

(
−iνn +

q2

2m
− µ+ iC

)
(95)

The inverse is thus given by

[
A−1

]
(νn,q; νm,q

′) =
δνn,νmδ(q− q′)

−iνn +
q2

2m
− µ+ iC

. (96)

We see, that the second term of Eq. (93) vanishes for any C for ωl ̸= 0 or q ̸= 0.
The same hods true for the first term. q = 0 is irrelevant for the mean field solution
(see Altland). Therefore, the action is indeed stationary for any constant (in (r, τ))
field. Requiring charge neutrality, we set C = 0. Our mean field solution is thus

ϕ0(r, τ) = 0. (97)

(e) The low-energy dynamics of the field are given by the fluctuations of the field ϕ
around its mean-field value. Expand the action to quadratic order in ϕ and identify
the polarization operator and the screened Coulomb interaction U−1

eff .

Solution: We denote the fluctuations by ϕ(r, τ). The first term of the action is
already quadratic in ϕ. To expand the term with the logarithm, we proceed along
the lines of lecture Eqs. (6.142 - 6.144). First, we separate our matrix in a mean
field part and the fluctuation field ϕ (everything should be understood in terms of
the matrix (86) here)

A = A0 + iϕ (98)

then

tr(log(A0 + iϕ)) = Tr
(
log
(
A0

[
1 + A−1

0 iϕ
]))

(99)

≈ Tr log(A0)−
1

2
Tr
(
A−1

0 ϕA−1
0 ϕ
)

(100)

From the last task we see

A−1
0 = G0 (101)

where G0 is the Green’s function of a free electron.
We find

Seff [ϕ] ≈
∫ β

0

dτ

∫
d3p

[
1

2
ϕ(p, τ)

p2

4πe2
ϕ(−p, τ)

]
+ Tr(log(A0))−

1

2
Tr
(
A−1

0 ϕA−1
0 ϕ
)

(102)



The second term can be identified with the partition sum of the free electron gas
(see Altland-Simons). The third term, again using the definition (86) of matrix A:

1

2
Tr
(
A−1

0 ϕA−1
0 ϕ
)
=

1

2

∑
i,j,k,l

[G0]i,jϕj,k[G0]k,lϕl,i (103)

=
1

2

∑
i,k

[G0]iϕi,k[G0]kϕk,i (104)

=
1

2

∑
νn,νm

∫
d3p d3p′G0(p, νn)ϕ(p− p′, νn − νm)G0(p

′, νm)ϕ(p
′ − p, νm − νn)

(105)

=
1

2

∑
νn,νm

∫
d3p d3p′G0(p+ p′, νn + νm)ϕ(p, νn)G0(p

′, νm)ϕ(−p,−νn)

(106)

:=
1

2

∫
d3p

∑
νn

ϕ(p, νn)Π(p, νn)ϕ(−p,−νn) (107)

In the last step we identified the polarization operator Π(p, νn). Rewriting the
effective interaction, we have

Seff [ϕ] ≈
∑
νn

∫
d3p

[
1

2
ϕ(p, νn)U

−1
eff (p, νn)ϕ(−p,−νn)

]
+ Tr(log(A0)) (108)

U−1
eff (p, νn) :=

(
p2

4πe2
− Π(p, νn)

)
(109)

Where the effective interaction potential corresponds to the screened Coulomb in-
teraction.

(f) Using the quadratic approximation for the effective action written in terms of the
Hubbard-Stratonovich fields, express the RPA free energy of the interacting electron
gas in terms of the polarization operator.

Solution: As we expanded the interaction to second order in ϕ, we can explicitly
solve the now gaussian path integral of the partition function in this expansion.
This solution to quadratic order corresponds to the RPA approximation.

FRPA = −T log(ZRPA) = −T log(Z0) + T

∫
d3q
∑
νn

log

(
1 +

4πe2

q2
Π(q, νn)

)1/2

(110)


