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1. Ginzburg-Landau action (10 + 1 + 4 + 10 = 25 points)

Consider the superconducting Ginzburg-Landau action

S[∆,∆∗] = β

∫
d3r

[
a(T )|∆|2 + b|∆|4 +K|∂r∆|2

]
. (1)

which was discussed at Sec. 6.3.3 of the lecture notes. The saddle-point of this action
corresponds to the Ginzburg-Landau equations. Using the action, we can go beyond the
saddle-point equations, include the fluctuations of the order parameter, and study the
accuracy of the mean-field theory.

(a) Calculate the coefficient K by expanding (6.149) to second order in q, and then
doing the momentum integral and the Matsubara sum. The momentum integral is
cut off at energy ωD such that T ≪ ωD ≪ EF. Within the usual approximations,
the result is given by Eqs. (6.162–3).

(b) Find the saddle-point solution ∆0 in terms of a and b by taking a functional deri-
vative with respect to ∆ and ∆∗.

(c) Expand the action to quadratic order in δ∆(r) = ∆(r)−∆0 around the mean-field
value ∆0. The resulting action can be written in the form

S[∆,∆∗] = βV fmf [∆0] + β

∫
d3rK

(
ξ−2
l |∆l|2 + |∂r∆l|2

)
+ β

∫
d3rK

(
ξ−2
t |∆t|2 + |∂r∆t|2

)
,

(2)

where V is the volume of the superconductor and fmf is the mean-field contribution
to the free energy density. Above, we separated the longitudinal and tranverse order-
parameter fluctuations by making a change of variables

δ∆ = ∆l + i∆t, δ∆∗ = ∆l − i∆t.

Identify the inverse coherence lengths ξ−1
l,t both below and above Tc.

(d) Determine the fluctuation contribution to the free energy of the superconductor by
doing the remaining Gaussian integral. Study the singular part of the heat capacity
near Tc by considering the derivative

Csing =
∂2(βf)

∂T 2
, (3)

where βf = − logZ/V . The mean-field theory is accurate when the mean-field
discontinuity is much larger than the fluctuation contribution. When is this criterion
satisfied?



2. Dzyaloshinskii-Larkin theorem (2 + 3 + 4 + 15 + 1 = 25 points)

The purpose of this exercise is to show that in the Tomonaga-Luttinger model all the
loops made out of n ≤ 3 fermionic lines vanish. This means that the RPA approximation
is exact. For this exercise it is enough to consider only the right-movers and assume
that the spectrum is ξp = v(p− pF ).

(a) Let us consider a loop made out of three fermionic Green functions and with three
wavy lines as external legs carrying frequencies ωi and momenta ki, i = 1, 2, 3.
Physically, such a diagram represents the cubic interaction of density fluctuations
(compare to polarization operator). To be precise, there are two diagrams of this
type which differ by the order of wavy lines. Draw these two diagrams and write
down the corresponding analytical expressions. Assume Matsubara technique for
definiteness.

(b) Use the following identity

1

iω − vp

1

i(ω + ν)− v(p+ q)
=

1

iν − vq

[
1

iω − vp
− 1

i(ω + ν)− v(p+ q)

]
(4)

to transform the analytic expressions for the diagrams discussed in task (a). What
is the graphical representation of this transformation?

(c) Show that the sum of the two diagrams from task (a) vanish.

(d) Generalize the above arguments for a loop with n ≥ 3 fermionic lines. Note that
there are now (n− 1)! diagrams which differ by the order of the external lines. The
loop diagrams for n external momenta can be generated by taking the set of loop
diagrams with n− 1 external momenta and inserting an extra wavy line in turn to
each of the fermionic lines.

(e) Why does the line of reasoning (a)-(d) not apply to a fermionic loop made out of
two fermionic lines (polarization operator)?


