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1. Ginzburg-Landau action (10 + 1 + 4 + 10 = 25 points)

Consider the superconducting Ginzburg-Landau action

S[∆,∆∗] = β

∫
d3r
[
a(T )|∆|2 + b|∆|4 +K|∂r∆|2

]
. (1)

which was discussed at Sec. 6.3.3 of the lecture notes.

(a) Calculate the coefficient K from the microscopic theory.

Solution:

K is defined by the expansion

χ(0)
c (0,q) ≈ χ(0)

c (0, 0)−K|q|2, (2)

and χ
(0)
c is given by

χ(0)
c (0,q) =

T

V

∑
ϵn,p

1

(iϵn − ξp)(−iϵn − ξ−p+q)
. (3)

In a metal with large Fermi momentum, we may approximate

ξ−p+q ≈ ξ−p − p · q
m

, (4)

and expand the above fraction to the second order. The first order term vanishes
under the integral. We approximate |p| ≈ pF in the numerator, and the density of
states ν by its value at Fermi surface. For the second order term, we obtain

K = − T

q2m2V

∑
ϵn,p

(p · q)2

(iϵn − ξp)(−iϵn − ξp)3

= − 2T

3m2

∑
ϵn

∫ ωD

−ωD

dξν
1

2

∫ +1

−1

d cos θ
p2F (cos θ)

2

(iϵn − ξp)(−iϵn − ξp)3

=
νv2FT

3

∑
ϵn

1

ϵ3n

(
ϵnωD (3ϵ2n + ω2

D)

(ϵ2n + ω2
D)

2 + tan−1

(
ωD

ϵn

)) (5)

When T ≪ ωD, the main contribution to the Matsubara sum comes from |ϵn| ≪ ωD.
At this limit, we can neglect the first term in the parentheses and approximate the
arcustangent by π sgn(ϵn)/2. The sum can now be evaluated:

T
∑
ϵn

1

|ϵn|3
=

7ζ(3)

8π3T 2
. (6)



We find the coefficient

K =
7πζ(3)

2 · 3 · 8π3
ν
(vF
T

)2
=

7ζ(3)

48π2
ν
(vF
T

)2
. (7)

Since we are interested in the expansion near Tc, we may neglect the temperature
dependence of K, and evaluate it at Tc:

K =
7ζ(3)

48π2
ν

(
vF
Tc

)2

= Cν

(
vF
Tc

)2

. (8)

(b) Find the mean-field solution ∆0 in terms of a and b by taking a functional derivative
with respect to ∆ and ∆∗. Choose the phase so that ∆0 is real.

Solution: From Eqs. (6.155) and (6.159), we have

a(T ) = νt, and b =
7ζ(3)

16π2

ν

T 2
c

= 3C
ν

T 2
c

(9)

where t = (T − Tc)/Tc is the temperature relative to the Tc. We are close to Tc so
b can be evaluated at Tc and its temperature-dependence neglected.

The two saddle-point equations

1

β

δS

δ∆
= 2a(T )∆∗(r) + 4b∆∗(r)|∆(r)|2 − 4K∇2∆∗(r), (10)

1

β

δS

δ∆∗ = 2a(T )∆(r) + 4b∆(r)|∆(r)|2 − 4K∇2∆(r) (11)

have the uniform solution

|∆0|2 = −a(T )

2b
, (12)

if the coefficient of the quadratic term is negative (a(T ) < 0) and quartic term is
positive (b > 0). This is satisfied when T < Tc. Above Tc, there is only the trivial
solution ∆0 = 0. The phase of ∆0 is not fixed by the saddle-point equations. We
choose the phase so that ∆0 is a positive real number.

(c) Expand the action to quadratic order in δ∆(r) = ∆(r)−∆0 around the mean-field
value ∆0. The resulting action can be written in the form

S[∆,∆∗] = βV fmf [∆0] + β

∫
d3rK

(
ξ−2
l |∆l|2 + |∂r∆l|2

)
+ β

∫
d3rK

(
ξ−2
t |∆t|2 + |∂r∆t|2

)
,

(13)

where V is the volume of the superconductor and fmf is the mean-field contribution
to the free energy density. Above, we separated the longitudinal and tranverse order-
parameter fluctuations:

δ∆ = ∆l + i∆t, δ∆∗ = ∆l − i∆t.

Identify the inverse coherence lengths ξ−1
l,t both below and above Tc.

Solution:



Above Tc, there is no difference between the longitudinal and transverse directi-
ons. Expanding the action around ∆ = 0 to quadratic order simply correspond to
throwing away the quartic b-term. We find

ξ−2
l,t =

a(T )

K
=

νt

K
=

|t|T 2
c

Cv2F
, (14)

where t = (T − Tc)/Tc.

Below Tc, we find

S[∆,∆∗] = β

∫
x

{
a(T )(∆2

0 + 2∆0∆l +∆2
l +∆2

t )

+b(∆2
0 + 2∆0∆l +∆2

l +∆2
t )

2

+K[(∂r∆l)
2 + (∂r∆t)

2]
}

≈ β

∫
x

{
a(T )(∆2

0 + 2∆0∆l +∆2
l +∆2

t )

+b(∆4
0 + 4∆3

0∆l + 6∆2
0∆

2
l + 2∆2

0∆
2
t )

+K[(∂r∆l)
2 + (∂r∆t)

2]
}

= β

∫
x

{
a(T )(∆2

0 +∆2
l +∆2

t ) + b(∆4
0 + 6∆2

0∆
2
l + 2∆2

0∆
2
t )

+K[(∂r∆l)
2 + (∂r∆t)

2]
}

= βV (a(T )∆2
0 + b∆4

0)︸ ︷︷ ︸
fmf [∆0]

+β

∫
x

{
[a(T ) + 2b∆2

0]︸ ︷︷ ︸
0

∆2
t +K(∂r∆t)

2
}

+β

∫
x

{
[a(T ) + 6b∆2

0]︸ ︷︷ ︸
−2a(T )

∆2
l +K(∂r∆l)

2
}

(15)

where the linear-in-∆l terms canceled because ∆0 satisfies the saddle-point equation
a(T ) = −2b∆2

0. The coherence lenghts are

ξ−2
t = 0, (16)

ξ−2
l = −2a(T )

K
=

2ν|t|
K

. (17)

The vanishing ξ−1
t is related to the fact that the transverse mode is the Goldstone

mode of the superconductor.

(d) Determine the fluctuation contribution to the free energy of the superconductor by
doing the remaining Gaussian integral. Study the singular part of the heat capacity
near Tc by considering the derivative

Csing =
∂2(βf)

∂T 2
, (18)

where βf = − logZ/V . The mean-field theory is accurate when the mean-field
discontinuity is much larger than the fluctuation contribution. When is this criterion
satisfied?



Solution:

To calculate the path integral, we first express the action in momentum space. The
Fourier transform is

∆l,t(r) =

∫
d3q

(2π)3
eiq·r∆l,t(q) (19)

The squares and the squares of derivatives transform as∫
x

∆i(r)
2 =

∫
x

∫
q

∫
q′
ei(q+q′)·r∆i(q)∆i(q

′)

=

∫
q

∆i(q)∆i(−q) =

∫
q

|∆i(q)|2,∫
x

[∂r∆i(r)]
2 =

∫
x

∫
q

∫
q′
(iq) · (iq′)ei(q+q′)·r∆i(q)∆i(q

′)

=

∫
q

q2∆i(q)∆i(−q) =

∫
q

q2|∆i(q)|2,

(20)

since for real field ∆i(−q) = ∆i(q)
∗.

The action becomes

Si[∆i] = β

∫
x

K(ξ−2
i ∆2

i + (∂r∆)2)

= β

∫
q

∆i(−q)K(ξ−2
i + q2)∆i(q)

(21)

The path integral can be written as a product of three terms:

Z = e−βV fmf [∆0]

∫
D∆l exp(−Sl[∆l])

∫
D∆t exp(−St[∆t]). (22)

Evaluating the fluctuation terms, we get∫
D∆i exp(−Si[∆i]) =

∏
q

∫
d∆qd∆

∗
q exp

(
−∆∗

q[βK(ξ−2
q + q2)]∆q

)
=
∏
q

π

βK(ξ−2 + q2)
∝ exp

(
−
∑
q

log[K(ξ−2 + q2)]

) (23)

The free energy density is

β∆f = − logZ
V

= βfmf [∆0] +

∫
q

log[K(ξ−2
l + q2)] +

∫
q

log[K(ξ−2
t + q2)]. (24)

Let us then consider the divergence of the heat capacity near the Tc. Heat capacity
itself is the first derivative of energy, but to study its divergence, we calculate the
second derivative. The temperature dependence of the mean-field part is

fmf [∆0] = a∆2
0 + b∆4

0 =

{
−a2

4b
= −ν(Tct)2

12C
. t < 0

0, t > 0
(25)



There is a discontinuity in the second derivative at critical temperature t = 0:

β
∂2fmf

∂t2
=

{
−νTC

6C
, t > 0

0. t > 0
(26)

The temperature dependence of the fluctuation part comes from the correlation
lengths. Below Tc, only the longitudinal fluctuations depend on temperature, and
we have

−
∑
i

∂2(βfi)

∂t2
=

∫
q

4ν2

[−2νt+Kq2]2
(27)

Above Tc, both modes depend on temperature and we get

−
∑
i

∂2(βfi)

∂t2
= −2∂t

∫
q

∂t(νt)

νt+Kq2
= 2

∫
q

ν2

[νt+Kq2]2

=
1

4πC3/2

(
TC

vF

)3

t−1/2

(28)

Below Tc, only the transverse mode depends on temperature:∑
i

∂2(βfi)

∂t2
= ∂t

∫
q

∂t(2ν|t|)
2ν|t|+ (Kq)2

= −
∫
q

4ν2

[2ν|t|+ (Kq)2]2

=
1

23/2πC3/2

(
TC

vF

)3

t−1/2

(29)

Now we may compare with the divergence:

R ∼ 1

4πC3/2

(
TC

vF

)3

· 6C

νTC

· t−1/2

∼ 3

2πC1/2

(
T 2
C

νv3F

)
t−1/2,

∼ 3π

4C1/2

(
TC

EF

)2

t−1/2

(30)

where the prefactor is somewhat different below and above TC , but the exponent
is 1/2 in both cases. One might now substitute some material parameters into this
expression. At the last step, we have used the properties of the Fermi gas to extract
the Fermi energy. At weak coupling TC ≪ EF , we find that the approximation is
very good.

What we have done here does not go beyond mean-field theory. We have calcula-
ted the fluctuations based on mean-field theory, and estimated the validity of that
approximation from within the theory. The exponent 1/2 is thus a mean-field pre-
diction, and we would expect a more careful calculation (renormalization group) to
change it at the regime where the fluctuations are significant. However such regime
only occurs very close to TC , and within the experimentally accessible range in ma-
ny superconductors the exponent of the heat capacity agrees with the mean-field
prediction.



2. Dzyaloshinskii-Larkin theorem (2 + 3 + 4 + 15 + 1 = 25 points)

The purpose of this exercise is to show that in the Tomonaga-Luttinger model all the
loops made out of n ≤ 3 fermionic lines vanish. This means that the RPA approximation
is exact.

(a) Let us consider a loop made out of three fermionic Green functions and with three
wavy lines as external legs carrying frequencies ωi and momenta ki, i = 1, 2, 3.
Physically, such a diagram represents the cubic interaction of density fluctuations
(compare to polarization operator). To be precise, there are two diagrams of this
type which differ by the order of wavy lines. Draw these two diagrams and write
down the corresponding analytical expressions. Assume Matsubara technique for
definiteness.

Solution:

Let us collect the momenta and frequencies to a 4-vector pi = (ki, ωi). The third
order diagrams are illustrated in Fig. X. Using Feynman rules, we can write down
the expressions associated with them:

S1 = −
∑
p0

G(p0)G(p0 + p1)G(p0 + p1 + p2), (31)

S2 = −
∑
p0

G(p0)G(p0 + p2)G(p0 + p1 + p2), (32)

(b) Use the following identity

G(p)G(p+ pn) =
G(p)−G(p+ pn)

iνn − vqn
(33)

to transform the analytic expressions for the diagrams discussed in task (a). What
is the graphical representation of this transformation?

Solution:

To get the same prefactor, we always apply the transformation to the termG(x)G(x+
p2) in the product:

S1 = − 1

iν2 − vq2

∑
p0

[G(p0)G(p0 + p1)−G(p0)G(p0 + p1 + p2)] (34)

S2 = − 1

iν2 − vq2

∑
p0

[G(p0)G(p0 + p1 + p2)−G(p0 + p2)G(p0 + p1 + p2)] (35)

(c) Show that the sum of the two diagrams from task (a) vanish.

Solution:

S1 + S2 =− 1

iν2 − vq2

∑
p0

[
G(p0)G(p0 + p1)−((((((((((((

G(p0)G(p0 + p1 + p2)
]

(36)

− 1

iν2 − vq2

∑
p0

[
((((((((((((
G(p0)G(p0 + p1 + p2)−G(p0 + p1)G(p0 + p1 + p2)

]
= − 1

iν2 − vq2

∑
p0

[G(p0)G(p0 + p1)−G(p0 + p2)G(p0 + p1 + p2)] (37)

= 0, (38)



where on the last line we shifted the integration variable in the second term to make
the integrand vanish.

(d) Generalize the above arguments to the case of arbitrary fermionic loop with more
than 2 fermionic lines.

Solution:

Let us consider the case with n + 1 fermionic lines and n + 1 external fields. We
define the function

γ(n+1)(p0; p1, p2, . . . , pn) = G(p0)G(p0 + p1) · · ·G(p0 + p1 + · · ·+ pn), (39)

which includes n+1 fermionic propagators and pj = (ωj, kj) are the external energy-
momenta.

We only need to consider a subset of diagrams. We choose a permutation pi1 , pi2 , . . . , pin−1

of the first n − 1 external momenta. Then we form the sum of the n diagrams in
which pn is placed after pij for each j = 0, . . . , n− 1. This gives us the sum

Si1,...,in−1(p0) =γ(n+1)(p0; pn, pi1 , pi2 , . . . , pin−1)

+γ(n+1)(p0; pi1 , pn, pi2 , . . . , pin−1)

+γ(n+1)(p0; pi1 , pi2 , pn, . . . , pin−1)

...

+γ(n+1)(p0; pi1 , pi2 , . . . , pn, pin−1)

+γ(n+1)(p0; pi1 , pi2 , . . . , pin−1 , pn).

(40)

We then use the identity

G(p)G(p+ pn) =
G(p)−G(p+ pn)

iωn − vkn
(41)

for each γ. For 1 ≤ j < n− 1 it gives

γ(n+1)(p0; . . . , pij , pn, pij+1
, . . . ) =

1

iωn − vkn

[
γ(n)(p0; . . . , pij , pij+1

+ pn, . . . )

−γ(n)(p0; . . . , pij + pn, pij+1
, . . . )

] (42)

When pn is the first one, we have

γ(n)(p0; pn, pi1 , . . . , pin−1) =
1

iωn − vkn

[
γ(n−1)(p0; pi1 + pn, . . . , pin−1)

−γ(n−1)(p0 + pn; pi1 , . . . , pin−1)
]
,

(43)

Now the sum becomes

−(iωn − vkn)S
(n)
i1,...,in−1

(p0) =

γ(n−1)(p0 + pn; pi1 , pi2 , . . . , pin−1)−
(((((((((((((((((

γ(n−1)(p0; pi1 + pn, pi2 , . . . , pin−1)

+
(((((((((((((((((

γ(n−1)(p0; pi1 + pn, pi2 , . . . , pin−1)− γ(n−1)(p0; pi1 , pi2 + pn, . . . , pin−1)

...

+ γ(n−1)(p0; pi1 , pi2 , . . . , pin−2 + pn, pin−1)−
(((((((((((((((((

γ(n−1)(p0; pi1 , pi2 , . . . , pin−1 + pn)

+
(((((((((((((((((

γ(n−1)(p0; pi1 , pi2 , . . . , pin−1 + pn)− γ(n−1)(p0; pi1 , pi2 , . . . , pin−1).

(44)



Like with n+ 1 = 3 case, there is a telescoping effect, as the adjacent terms cancel
each other and we left with only the first and the last term

−(iωn − vkn)S
(n)
i1,...,in−1

(p0) =

γ(n−1)(p0 + pn; pi1 , pi2 , . . . , pin−1)− γ(n−1)(p0; pi1 , pi2 , . . . , pin−1).
(45)

Now we shift p0 + pn → p0. After this shift the sum-integral over S(n) vanishes.

(e) Why does the line of reasoning (a)-(c) not apply to a fermionic loop made out of
two fermionic lines (polarization operator)?

Solution: For two fermionic lines the expression is

−
∑
p0

G(p0)G(p0 + p1) =
1

iω1 − αvk1

∑
p0

[G(p0)−G(p0 + p1)] (46)

and it seems like we can just shift the integration variable to make the two propa-
gators cancel against each other. However, the integrals are now divergent and we
need to add a cutoff to make them converge. The presence of a cutoff forbids us
from shifting the integration variable.

This problem does not arise for higher order diagrams as they have a higher power
of p in the denominator.


