Karlsruher Institut für Technologie – Institute for Condensed Matter Theory Institute for Quantum Materials and Technologies

Condensed Matter Theory II: Many-Body Theory (TKM II) SoSe 2023

PD Dr. I. Gornyi and Prof. Dr. A. Mirlin	Homework assignment 12
Dr. Risto Ojajärvi and Paul Pöpperl	Deadline: 21 July 2023

1. Fermion operators in bosonization: (15+15 points)

In Sec. 7.6 of the Lecture Notes, the bosonized representation of fermion operators was introduced:

$$\psi_{\alpha}^{\dagger}(x) = A U_{\alpha}^{\dagger} \exp\left\{-\mathrm{i}\alpha k_{\mathrm{F}} x - \mathrm{i}[\theta(x) - \alpha \phi(x)]\right\},\tag{1}$$

$$\psi_{\alpha}(x) = A U_{\alpha} \exp\left\{i\alpha k_{\rm F} x + i[\theta(x) - \alpha \phi(x)]\right\}.$$
(2)

- (a) Using the commutation relations for the bosonic fields $\theta(x)$ and $\phi(x)$, as well as the anticommutation for Klein factors U_{α} , derive the anticommutation relations for the fermion operators on the same ($\alpha = \alpha'$) and different($\alpha \neq \alpha'$) branches, and determine the normalization constant A. The Baker-Campbell-Hausdorff formula for operators B and C can be used here: if D = [B, C] satisfies [B, D] = [C, D] = 0, then $e^B e^C = e^{B+C} e^{D/2}$
- (b) Substituting the bosonized representation of the fermionic operators into the fermionic form of the free Hamiltonian for right movers with the linear dispersion,

$$\hat{H}_{0,+} = v_F \int dx \,\psi_+^{\dagger}(x) \left(-\mathrm{i}\frac{\partial}{\partial x} - k_F\right) \psi_+(x),$$

derive the bosonized form of $\hat{H}_{0,+}$. For this purpose, use the "point-splitting" procedure by first replacing $\psi^{\dagger}_{+}(x)$ with $\psi^{\dagger}_{+}(x+d)$, expanding the fields in small d, and taking the limit $d \to 0$ at the end of the calculation, with the ground-state average removed as in the normal-ordered product.

2. Zero-bias anomaly in the Luttinger liquid

(20 points)

In Sec. 7.7.5 of the Lecture Notes, the energy dependence of the tunneling density of states in a Luttinger liquid was found: $\nu(\epsilon) \propto |\epsilon|^{\gamma}$, with exponent $\gamma = (K + K^{-1})/2 - 1$ determined by the Luttinger parameter K. Starting with the expression for the Green's function in the spinless case, express Im $G^{\mathbb{R}}(0,t)$ through $G^{>}$ and $G^{<}$, and derive the full expression for $\nu(\epsilon)$ at zero temperature, including the numerical factor in front of the power-law energy dependence. The following identities for the Gamma function $\Gamma(x)$ can be useful: $\Gamma(x) = \int_0^\infty ds \, \exp(-s) s^{x-1}$ and $\Gamma(x) \Gamma(1-x) = \pi/\sin(\pi x)$.