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1. Fermion operators in bosonization: (15 + 15 points)

In Sec. 7.6 of the Lecture Notes, the bosonized representation of fermion operators was
introduced:

Yi(r) = A Ul exp {—iakpxr —i[0(z) — ad(2)]}, (1)
Vo(z) = AU, exp {iakpx +i[0(z) — ap(x)]}. (2)

(a) Using the commutation relations for the bosonic fields 0(z) and ¢(z), as well as
the anticommutation for Klein factors U,, derive the anticommutation relations for
the fermion operators on the same (« = ') and different(av # ') branches, and
determine the normalization constant A. The Baker-Campbell-Hausdorff formula

for operators B and C' can be used here: if D = [B, C] satisfies [B, D] = [C, D] = 0,
then ePeC = eB+CeD/2

Solution: We need to calculate
{wl(2), Ys(a')} (3)
[ta(e), Ya(a)}. (4)
We know from the lecture notes, Eqs. (7.100), (7.101):
U Ul =UlU, =1 (5)
{Up, Uy} ={UL UL} ={UL, UL} =0 for a # o (6)

)

From the definitions of §(z) and ¢(x) (Eq. (7.104))

s | R _ .
0(x) =7 D e [—0:(q) — o-(q)e” " (7)
q#0 1
im 1 —iqx —lglx/2
o(z) = fz,e lo+(q) — 0-(q)]e (8)
q#0 q
rq\L>% by a>0
= (4= , 9
o) = (14 S )
glL\? [b_ g q>0
(o) = (9= 10
e@=(55) 1 0l (10)
[Z)(Tx,q‘/ ba@q/] = —0a,0/0q,¢' (11)

It is convenient to introduce new fields that appear in the exponents of the fermionic



operators:

Cal() := 0(x) — ad(x)
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Consider + operator:
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where

Commutation relations for these new operators:

[+ (), - (2)] = [} (), (2)] = 0

because [by, by] = [bl, bj;] = 0. Furthermore:
e~ (a+d")A/2 . L
[+ (), 1L () Z e by

q,9'>0
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= INTE =) g —oni/L, jEZ

q>0 q

i — 2 [i(@'—2)+A]
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The sum can be evaluated with Mathematica.
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We use the new operators to rewrite the fermionic creation and annihilation opera-



tors:

by (2) = AUL ™ exp(ifo(z) — o(a))) (27)
— AULe** exp(ic. (x)) (28)
= AU exp (il (2) + nl (2)]) (29)

Now we use the BCH formula with B = in, (z), C' = in (z). The commutator of
these operators is a number, thus D commutes with B and C' as required. We find

b (x) = AU, e*r7ent @)@ oxp(log (27 ) /L)) (30)
— /QW)\AU RLEN inl (z) eln+(2) (31)
and similarly
2\ A . .
¢1(37) = %AUie_‘ker_ml(x)e_m(“"’). (32)
Thus
21 . t N e,
U () jr(x/) AQU ikp (z—1’) lnl(ﬂi)elm(z)UJTre—ml(z)e—lm(w) (33)
_ A2 AU U it o) inl (2) g =ink (&) i () g min s (0) b () i ()
(34)
2T\ | N oo m [2 -
- ,@%elmm ) ein} @)=l (@) Gilns (@)= (2')) HT[A i — x/)]]
(35)
T 2N o (z—a') —in' (2) —iny (2") jing (z) Jinl (2)
Yl (z )¢+($)=TA6 ’ e I eI el el (36)
2T | N . m [2 !
- Az%eu@(H ) il (@)=l (2)) gi(n+ (2) =14 (@) HT[ A —i(a’ — x)]]
(37)
where we used U1U+ = UJrUjL =1, and BCH to commute the exponentials:
eBeC o B+C D/2 (38)
= e%elel. (39)
We find the anticommutator
{4 (), wj_(xl)} = AQ?eikF(zx’)ein(w)ﬁl(r’))ei(m(:v)m(x’)) % (40)

X

70 e a] o+ [ Ep i -] (41)
L L
A0 42 2TA ik o) i ()= )i @)1 D L5 — ) (42)
L
= A227\§(x — 2') (43)



We obtain the desired fermionic anti-commutation relation, by setting A := (27\)~!.
We repeat the procedure for the other same-branch anti-commutators:

1 2w\

Yy () (a) = ST ieikp(x+z/>einl(w)em(w)einuz/)eimw@ (44)
2 ikp(z+a’)
_ DR st @ +nl (@) it (@)4n4 ) gl @)1 (@) (45)
L
2 Likp(z+a)
_ DR ol @-nl @) it @) 2) 2T

7 A —i(z—2")]  (46)

The anti-commutator:

2 U2 ikp (z+z') . fooe ,
{4(2), 94 (2')} = T RN @00 () — (o’ — )] 4+ A~ (e — @)
(47)
2 Likp(z+a') R
_ MﬁTei(ni(:v)+?7'+(ﬂf’))ei(n+(x)+77+(:v’)) L2200, (48)
Same result for
(¢ (@), v (@)} = {04 (2), 9y ()} (49)
The —-branch:
2ir 1 o =
((z) = 2. e weliA2p_(q) (50)
q
q#0
LU Y —igz i
=-=)_ [0-(q)e ™" — 0_(—q)e'"] (51)
q>0 q
= — 2_7T Z LQ—M\)\/? [b_ _qe—iqw A 7qeiq:v] (52)
L q>0 \/C_I 7
=n_(z) +n' (z) (53)

{Wh(2), ()} = APULU_e ™ foxp (i€ (@), exp(iC- ()] =0 (54)

Here, we used {U!,U_} = 0. The commutator vanishes, because ¢, (¢_) only con-
tains by, bl (b_, bT_) operators, and different branch creation / annihilation operators
commute with each other. For the same reason, any other pair of fermionic field
operators from different branches anti-commute amongst each other.

For the — branch, the calculation can be performed in analogy to the +-branch
calculation.

Substituting the bosonized representation of the fermionic operators into the fer-
mionic form of the free Hamiltonian for right movers with the linear dispersion,

derive the bosonized form of ﬁ0,+- For this purpose, use the “point-splitting” pro-
cedure by first replacing 1/11 (x) with 1/)1(37 +d), expanding the fields in small d, and



taking the limit d — 0 at the end of the calculation, with the ground-state average
removed as in the normal-ordered product.

Solution: We start with the term
Yl (@) () = ol (z + d)yy (@), (55)

We rewrite this term as we did in subtask (a):

wjr‘r (.CL' + d)w+(l‘> _ %eikpdein_T‘_(erd)ein_‘_(erd)einl (z)eim_ (z) (56)

_ L ibrd il )l @) gin (et d) s () gl () (@) (57)

A0 L ik il (e d) - () g—iCna (2 d) - (2) (58)
2md

We expand in small d:

(@ Ay (@) ~ (1= ikpd) (1 — i O () (1~ 1-d - Oeny(2))  (59)

2rd
M(l ~ied- (e + 0,04 () (60)
= o (ke +0.6,(0) (61)

27rd

The second term:

t ok (@ +d) g —in] (e+d) —in (2-+d) [8 ikpa jin! () m(m)} 62
Vi (z + d)0py(x) = L € € € € (62)
_ %eikp(:c+d)einl(:c+d)ei77+(:c+d) ” (63)
« _[axeikl:x] einl(m)ein+(z) + eikpx [axelnl(z)} ei7I+( ) + elkpxelnl [a e177-%—( )]] (64)
_ %e—ikF(Hd)e—inL(w+d>e—in+<x+d) % (65)
« :k,Feikerini( x) 177+( ) _I_elkpx<8 m ( )) ini(m)ein+(x) +eikerini(CL‘)(0xn+(x))eiﬂ+(l’)]
(66)

Here we used [9,n4(z),m4 ()] = [0.1).(z), 7} ()] = 0 as can be seen from the
definition of 7 (x). In this case, the derivative of the exponential can be performed
as usual.

U (z+ d)0,y (z) = %e‘i’“Fde‘i”T+ (D) gin ()i =) [kF + 0 (@) + (D (sc))] e+ (%)

(67)
= —ﬁe_iwe_ini(”‘i)ei”i(“”C)e_i’”(”d) [kﬁp + 3#]1 () + (Oun+ (95))} e+ (@)
(68)
Now we use the identity
[A,eP] = [A, Ble® for [A,[A, B)] = [B,[A, B]] =0 (69)

= eBA=(A—[A B])e? (70)



to get

e DYl (2) = (0 () + 1[0 (2), me (2 + d) e EH - (71)

27 .
0u ), 1:)] = 0o (A — i’ = ) (72)
1 PG|
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thus
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(76)

As there is a term of O(d™?) we have to expand the exponentials to second order.

0o+ d) = () = —id Do) + 00 ) (77)



oot (o) o (1= iked = 50 ) (1 idounl 0) - 5 (1020l o) + @unl () )
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evaluating the commutator:

02l ()01 (@) = Doy (@)l ()| = lim, O[Ol (). (a)] (92)

r—x!
lim O -
=M Op 7~
sz N —i(a) — x)
1

=

The term 92(, () is a total derivative and thus vanishes upon integration (by
applying the divergence theorem, and assuming that all fields vanish at infinity).



As instructed, we collect all non-divergent terms and arrive at

A o,
Hoi = vp/dx Yl (x) (—1({% - k:F) Yy () (95)
- / e [ 0L (@)t (1) 2 e 0 ()0 (a) (96)
e [ |+ 0.C @ — S + 8, ()] (97)
= Vr 5547TF 264+ (T o LNF 6+ (T
= Z— /dx [(0.¢,())* + const] (98)
T
= TUR / dz ¢ (z) + const (99)
Here : - : means, that we neglect divergent terms. Again, we removed total deriva-

tives; and const is a constant background density. We identified

)\ 0 2m —igx
DuCi (1) = =) e 0. (q) (100)
q70
27 —iqx
= 2N e ) (101)
q
— —(2m)os (). (102)
2. Zero-bias anomaly in the Luttinger liquid (20 points)

In Sec. 7.7.5 of the Lecture Notes, the energy dependence of the tunneling density of
states in a Luttinger liquid was found: v(¢) o |¢|?, with exponent v = (K + K~')/2 — 1
determined by the Luttinger parameter K. Starting with the expression for the Green’s
function in the spinless case, express Im G®(0, t) through G~ and G<, and derive the full
expression for v(e) at zero temperature, including the numerical factor in front of the
power-law energy dependence The following identities for the Gamma function I'(z)
can be useful: I'(z) = [;* ds exp(—s)s”~! and I'(2)I'(1 — 2) = 7/ sin(7z).

Solution: The tunnehng density of states (Eq. (7.148) of the lecture notes):
1 R 1 iet YR
vi(e) = —=ImGL(0,€) = —=Im [ dte'"G}(z =0,1) (103)
T T

where G% is the retarded Green’s function (Eq. (3.77) of the lecture notes):

GR(x,t) = —10(t)({¥a(, 1), ©1(0,0)}). (104)

We introduce the lesser and greater Green’s functions and express the retarded and
causal Green’s functions in terms of them:

G2 () 1= —i{upa(a, DE1(0,0)) (105)
G (2, 1) = (1 (0, 0)ba(a, 1)) (106)
GR(a,1) = 6(1)[GZ (2, 1) — G (1) (107)
G, 1) = T a(z, )05 (0,0)) = OG> (2,8) + 0(—t)G=(x,t). (108



From the Lecture notes (Eq. 7.144) we know the explicit form of the causal Green’s
function at zero temperature:

Y

1 .
I 109
Grlz,t) = 5re (x — ut + isign(t))+7/2(x + ut — iAsign(t))/? )
where
K+ K™ =2
Yy +; (110)

K is the Luttinger parameter and v = vg/K. X is the usual regularization parameter.
From G (z,t) we read off lesser and greater Green’s functions:

1 A7
> _ _ ikpx 111
Gola,t) = Gyt > 0) = e 20 T at N2 (111)
1 A7
< < 0) = L giken 112
G, t) = Gt <0) o (x — ut — IN)"H/2 (2 + ut 4 iX)1/2 (112)
Thus, we find
GR (1) = 0(t)elkre N 1 B 1
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(113)
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2 21 m {(x — ut +1iN)H2 (x + ut — i)\)7/2] (114)
To use this result in Eq. (103), we set x = 0:
NI 1
Mo =0,1)=2 I 11
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I [(—m (1) 72(ut — N2 (ut — iN)1/2 (116)
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_ 00y, [< (=iAS 1 (118)



Plugging into Eq. (103):

vy(e) = %Im /0 Tt Tm [%} (119)
:% Ooodtcos(et)lm {%] (120)
I S e A B G (ir)7
=g ), e )[(ut—i)\)lﬂ_(ut—i—i)\)lﬂ} (121)
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In the last line we substituted ¢ — —t in the second term. Rewriting the sum of fractions
in the second term:

—_ (A } | (= (iA)? ]
(=1t + N u) =y (=1)7(—ir u)t+
(126)

(—t— MW (=t +iru)h

GV (ir)?
— L (t— N u)lHY a (t + i)\/u)uy} (127)

this is the same as the sum of fractions in the first term. Therefore, we have

Ve (e) ;/:dteift[( (A G ] (128)

T dinult t—iXNu)' (4N u)tty

- c/w AtI(t) (129)

o0

There are two singular points in the integrand: the first fraction has a singularity at
t = i\/u, the second one has a singularity at ¢ = —i\/u. As we saw on sheet 0, the
function f(x) = x has a branch cut on the negative real axis. Thus, the first term
features a branch cut at Im () = A/u, Re(t) < 0. The second term has a branch cut
at Im (t) = —A\/u, Re (t) < 0. Let us consider the resulting integral first for € > 0. We
consider the complex contour integral

I = fds](s) (130)

where the contour I' consists of

I'y: real axis from —oo to 0o

e ['5: semi-circle counter-clockwise in the upper half plane

['3: the line immediately above the branch cut at Im (¢) = A/u, from —oo to 0

I'4: the line immediately below the branch cut at Im () = A\/u, from 0 to —oc.



Contours I'y — 'y, I's — 'y, I'y — 'y are connected by infinitesimally small semi-circles,
that give vanishing contributions.
Because of € > 0, I'y does not contribute. This means, that

/F dsI(s) :—/F3 ds[(s)—/m dsI(s) (131)

olo 0-HA/u+i0 0+iX/u—i0
= / At I(t) = — / dt I(t) + / dt I(t) (132)

—oo+i\/u+i0 —oo+iA/u—i0

S 1 1
(i)Y e N u dt el o 1
(=iA)Te / ¢ {(t—io)lﬂ (t +10)1+7 (133)

—0o0

Here we discarded the second term, because it is continuous in the upper half plane,
such that it cancels between contours I's and I'y. Using (z + i0)'+7 = [¢|'+7ei(1+7) =
—|t|*e™We find

/oo At I(t) = —(—i\)Ye M /0 dt eietm% [e — e (134)
= —2i(ie) T (—7)(—i\)Ye M sin(7y) (135)
= —2i(\e)"T(—)e M sin(my) (136)

where we solved the standard integral with Mathematica. We find

(Ae)?

. o —eXu _:
() = 52 (—v)e sin(7my) €>0. (137)

The calculation for e < 0 is analogous. In this case, we close the contour in the lower

half plane—excluding the corresponding branch cut—and the branch cut in this plane

contributes. In total, we find after taking A — 0 and using sin(7y)['(—v) = —Fi)

e (A (135)

T 2mul(1+9) \

We read off the prefactor from the lecture notes (7.149): [2aT'(1 + )]



