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1. Conductance of a non-interacting quantum wire (10 + 10 = 20 point)

In Sec. 7.8.1 of the Lecture Notes, an impurity in a quantum wire was described by
the following term in the Hamiltonian: Himp =

∫
dx U(x)ψ†(x)ψ(x) , where ψ(x) =

ψ+(x) + ψ−(x) is the total fermionic operator, including right-moving and left-moving
contributions. The impurity was then characterized by the forward and backward scat-
tering amplitudes

Uf = U(k = 0) ≡
∫
dxU(x), (1)

Ub = U(k = 2kF ) ≡
∫
dxU(x)e−2ikF x. (2)

Consider a quantum wire connected to two reservoirs biased by the voltage V . The inter-
faces between the wire and the reservoirs do not lead to the electron backscattering. The
conductance g of the wire is given by the ratio of the electrical current I = e

h

∫
dk ∂εk

∂k
nk

and the voltage V : g = I/V . Calculate the conductance of a non-interacting wire at
zero temperature...

(a) in the absence of the impurity potential (clean wire).

Solution: The current is given by

I = − e

h

∫
k

vknk (3)

= − e

h

∫
k>0

vk(nk − n−k) (4)

In 1D, the group velocity vk = ∂εk/∂k and density of states ν(ϵ) = (∂εk/∂k)
−1

exactly cancel against each other. The assumption about no backscattering means
that we assume that the occupation number nk for right-movers is equal to the
occupation number in the left reservoir, and the occupation number n−k for left-
movers equals that of the right reservoir. For the current we get

I = − e

h

∫
dε [θ(ε− µL)− θ(ε− µR)] (5)

= − e

h
(µL − µR)︸ ︷︷ ︸

−eV

(6)

=
e2

h
V (7)

Where we have identified the voltage V . We find the conductance

g =
I

V
=
e2

h
, (8)



which is half the conductance quantum, a quantity generally relevant for ballistic
conductors. The usual factor of 2 would comes from spin, which we do not have
here.

(b) in the presence of a single (weak) impurity in the wire.

Solution: According to lecture Eq. (7.165) the impurity is represented by a δ-
potential, with amplitude Ub for the backscattering part. Forward scattering can be
neglected.

Our 1D model was originally derived from a model with a parabolic spectrum, and
we will use a dispersion E = p2/2m here also, in order to use the usual results
for the potential scattering. Besides, it is not immediately clear how to write the
Schrödinger equation in position space for Tomonaga or Luttinger models.

Scattering on a δ-barrier was solved in QM I: Assuming an incoming wave ψ+(k)
from the left of the barrier, there is a reflected part rkψ+(k) with

rk =
1

ik
mUb

− 1
. (9)

We assume that the voltage is small enough so that the momentum will be close to
the Fermi momentum and approximate

k

m
≈ vF . (10)

The reflection coefficient is given to the leading order Ub by

r ≈ −i
Ub

vF
. (11)

Due to current conservation, the current in 1D system is position independent, and
we calculate it left of the barrier. As we are considering elastic scattering, we only
have to take into account energies that are not fully occupied:

I = − e

h

∫ µR

µL

dε [nk − n−k] (12)

The occupation number for right-movers is not affected on the left side of the
barrier, and on this interval, we have nk = 1. Due to reflection, the population of
the right-movers is not zero anymore, but is given by

n−k = |rk|2nk = |r|2 (13)

Thus we get

g =
I

V
= − e

hV

∫ µR

µL

dε
(
1− |r|2

)
(14)

=
e2

h
(1− |r|2) (15)

≈ e2

h

(
1− U2

b

v2F

)
. (16)



2. Interaction-induced backscattering (15 points)

In Sec. 7.9.1 of Lecture Notes, interaction-induced backscattering in a spinful Luttinger
liquid was introduced. After bosonization, the interaction Hamiltonian is

H1⊥ =
2g1⊥
(2πλ)2

∫
dx cos[2

√
2ϕσ(x)]. (17)

Considering the coupling g as small, derive the RG equation

dg1⊥
d ln b

= (2− 2Kσ)g1⊥ .

in the same way as it was done for the impurity-induced backscattering amplitude Ub

in Sec. 7.8.1 of Lecture Notes.

Solution:

To simplify notation, we drop all the σ’s and subscripts from g. The total action is
S = S0 + S1⊥, where

S0[ϕ] =
1

2πuK

∫
dτdx[(∂τϕ)

2 + u2(∂xϕ)
2] (18)

To derive the RG equation, we follow the steps of Sec. 7.8.1. Since g is small, we make
the expansion

e−S[ϕ] ≈ e−S0[ϕ]−Simp[ϕ] ≈ e−S0[ϕ](1− Simp[ϕ]). (19)

In our theory, we have some ultraviolet cutoff λ. We label the momenta in the interval
[(bλ)−1, λ−1] as fast, and the smaller momenta as slow. We can sepate the free part of
the action into two:

S0[ϕ] = S0[ϕ>] + S0[ϕ<]. (20)

Considering just the integral over the fast fields gives∫
Dϕ>e−S[ϕ>,ϕ<] = e−S0[ϕ<]

∫
Dϕ> (1− Simp[ϕ]) e

−S0[ϕ>]

= e−S0[ϕ<]
(
1− ⟨Simp[ϕ]⟩>

)
,

(21)

where the functional integral is given by

⟨Simp[ϕ]⟩> =
2g

(2πλ)2

∫
dτdx

〈
cos[2

√
2ϕ(x, τ)]

〉
>

(22)

=
2g

(2πλ)2
Re

∫
dτdx

〈
ei 2

√
2ϕ(x,τ)

〉
>

(23)

=
2g

(2πλ)2
Re

∫
dτdxei 2

√
2ϕ<(x,τ)

〈
ei 2

√
2ϕ>(x,τ)

〉
>

(24)

(25)

The above average is simply a gaussian integral in which the argument of the exponential
inside the angle bracket acts as a source term. We use Eq. (6.55) to evaluate it. A(q, ω) =
q2+ω2

πuK
and J(q) = −i2

√
2〈

ei 2
√
2ϕ>(x,τ)

〉
>
=

∫
Dϕ> exp

[∫
q,ω

(
u2q2 + ω2

2πuK
[ϕ>(q, ω)]2 + i2

√
2ϕ>(q, ω)

)]
(26)

≃ exp

(
−4

∫
(bλ)−1<q<λ−1

πuK

u2q2 + ω2

)
(27)



The determinant prefactor we have dropped at ’≃’ is the same as for the average
⟨1⟩> ≃ 1 done implicitly in Eq. (21). The above exponential factor determines the
relative magnitude of 1 and Simp[ϕ<]

In the following, we assume that the fast fields are defined so that the field is fast if
(bλ)−1 < u2q2+ω2, i.e. either momentum or frequency can be large. Then we can reduce
the integral to a spherically symmetric 2D integral:∫

(bλ)−1<q<λ−1

πuK

u2q2 + ω2
=

∫
dq dω

(2π)2
πuK

u2q2 + ω2
=
K

2

∫ λ−1

(bλ)−1

dr r

r2
=
K

2
ln b (28)

Substituting this back into Eq. (27) gives

exp

(
−4 · K

2
ln b

)
= b−2K . (29)

Now the impurity action becomes

⟨Simp[ϕ]⟩> =
2gb−2K

(2πλ)2

∫
dτdx cos[2

√
2ϕ<(x, τ)]. (30)

Now we rescale

x′ = x/b, τ ′ = τ/b (31)

ϕ′(x′, τ ′) = ϕ<(x, τ) (32)

We get a

⟨Simp[ϕ]⟩> =
2gb2−2K

(2πλ)2

∫
dτ ′dx′ cos[2

√
2ϕ′(x′, τ ′)] (33)

which is of the same form as before.

As a function of b, we have
g(b) = b2−Kg(0), (34)

where g(0) is the original coupling constant. Defining a logarithmic variable L as b = eL,
we write above as

g(L) = e(2−2K)Lg(0) (35)

Take the derivative around L = 0 to obtain the RG equation

dg

dL
= (2− 2K)g. (36)

This grows infinitely strong if K < 1, or vanishes asymptotically if K > 1. In the end,
there is not much difference to the single impurity case. Now the interaction acts as a
scatterer that is present everywhere in space, but the calculation remain the same.

3. Kubo formula for the conductivity (15 points)

In Sec. 8.2 of Lecture Notes, the Kubo formula for the conductivity of non-interacting
fermions was derived. Starting from the Matsubara expression for the current-current
response function,

DM
jj;µν(r, r

′;ωm) = e2
1

β

∑
εn

v̂µ GM,0(r, r
′; εn + ωm) v̂ν GM,0(r

′, r, εn).



derive the retarded response function DR
jj;µν(r, r

′;ω) [Eq. (8.31) of Lecture Notes].

Solution:

The position coordinates will stay fixed in the following, and we can omit them. We
will also omit the operators ν̂ and the prefactor e2. Let us define the GF

G(z) = GM,0(−iz), (37)

so that G(iεn) = GM,0(εn). G is an analytic function separately on the upper half plane
(Im z > 0, we denote this by GR) and on the lower half plane (Im z < 0, denoted by
GA). The current-current response function can be written as

DM
jj;µν(ωm) =

1

β

∑
εn

G(iεn + iωm)G(iεn)

=

∮
C+

dz

2πi
nF (z)G

R(z)GR(z + iωm)

+

∮
C0

dz

2πi
nF (z)G

A(z)GR(z + iωm)

+

∮
C−

dz

2πi
nF (z)G

A(z)GA(z + iωm).

(38)

On the last step, we transformed the sum into an contour intergral, similar to Ex.3(e)
from Sheet 7. But now the integrand has two lines of non-analyticity, one at z = 0 and
one at z = −iωm, and we need three contours. The first one, C+, is a counterclockwise
semicircle on the upper half plane connected by a straight line from z = −∞ + i0+ to
z = +∞+i0+. The third one, C−, is a counterclockwise semicircle on the lower half plane
connected by a straight line from z = +∞− i(ωm + 0+) to z = −∞− i(ωm + 0+). The
middle one, C0 includes straight lines from z = −∞−i(ωm−0+) to z = +∞−i(ωm−0+)
and from z = +∞− i0+ to z = −∞− i0+, connected by segments at infinity.

The semicircles and the segments are assumed to vanish, and we are left with four
integrals over the real line:

DM
jj;µν(ωm) = −i

[ ∫
dE

2π
nF (E)G

R(E)GR(E + iωm)

−
∫

dE

2π
nF (E)G

A(E)GR(E + iωm)

+

∫
dE

2π
nF (E − iωm)G

A(E − iωm)G
R(E)

−
∫

dE

2π
nF (E − iωm)G

A(E − iωm)G
A(E)

]
.

(39)

As usual, the bosonic Matsubara frequency ωm can be removed from the Fermi function.
We may then do the analytical continuation from iωm → −ω to obtain

D(ω) = DM
jj;µν(iω) = −i

∫
dE

2π
nF (E)

[
GR(E)GR(E − ω)−GA(E)GR(E − ω)

+GA(E + ω)GR(E)−GA(E + ω)GA(E)

]
.

(40)



which can be regrouped to give

D(ω) = −i

∫
dE

2π
nF (E)

{
[GR(E)−GA(E)]GR(E + ω)

+GA(E + ω)[GR(E)−GA(E)]

}
= −i

∫
dE

2π

{
f(E + ω)[GR(E + ω)−GA(E + ω)]GR(E)

+GA(E + ω)[GR(E)−GA(E)]f(E)

}
.

(41)

This is, up to the factors that we have not written explicitly, Eq. (8.31) of the lecture
notes.

There is some structure here. The combination

GK(E) = [GR(E)−GA(E)]f(E) (42)

is the Keldysh part of the Green’s function for a system in equilibrium. Using this, the
Green’s function can be written compactly as

D(ω) = −i

∫
dE

2π

{
GK(E + ω)GR(E) +GA(E + ω)GK(E)

}
. (43)

One could have obtained this result also via another route using the heavy machinery of
the non-equilibrium field theory (more specifically Keldysh technique). But analytically
continuing Matsubara Green’s functions is arguably a simpler way.


