
Einführung in Theoretische Teilchenphysik

Lectures: Prof. Dr. M. M. Mühlleitner – Exercises: M.Sc. Martin Gabelmann, Dr. Sophie Williamson

Exercise Sheet 8

Hand-in Deadline: Friday 22.01.21, 14:00.
Discussion: Tuesday 26.01.21, Thursday 28.01.21.

1. [15 points] Unitarity in νν̄ →W+
L +W−L scattering:

Consider the production of longitudinally polarised W -bosons via νν-scattering,

νe(p1) + ν̄e(p2)→W+
L (q1) +W−L (q2)

(a) [1 point] Draw the two Feynman diagrams describing this process at tree-level in the Standard
Model.

(b) [3 points] Determine the corresponding scattering amplitude using the Feynman rules given
below, and show that

Mt =
− e2

4 sin2 θw

1

t

[
v̄(p2) γ

ν (1− γ5) ( /p1 − /q1) γ
µ u(p1)

]
ε∗µ(q1) ε

∗
ν(q2) ,

Ms =
e2

4 sin2 θw

1

s−m2
Z

[v̄(p2) γα (1− γ5) Γµνα(q1, q2, s)u(p1) ] ε∗µ(q1) ε
∗
ν(q2) ,

where s, t denote Mandelstam variables, and the electron is assumed to be massless. Calculate
the explicit expression of the form factor Γµνα(q1, q2, s) as a linear combination of 4-momenta and
metric tensors.

(c) [4 points] The longitudinal polarization vector of a massive gauge boson with mass m can be
written generically as

εµL(k) = γ
(
|~β|, ~̂β

)
,

with

~β ≡
~k

k0
γ ≡ (1− β2)−1/2 ~̂β ≡

~β

|~β|
.

Show that in the centre-of-mass frame, the longitudinally polarised W -bosons are given by

εµL(q1) =

√
s

2mW

√1−
4m2

W

s
, sin θ, 0, cos θ

 ,

εµL(q2) =

√
s

2mW

√1−
4m2

W

s
,− sin θ, 0,− cos θ

 .
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Here, θ is defined as the scattering angle between the incoming neutrino νe and the outgoing W+

in the centre-of-mass frame.

(d) [5 points] In the Dirac representation, Dirac fermions are written as

u+(p) =
/p+m√
(p0 +m)


1
0
0
0

 , u−(p) =
/p+m√
(p0 +m)


0
1
0
0

 ,

v+(p) =
/p−m√
(p0 +m)


0
0
0
1

 , v−(p) =
/p−m√
(p0 +m)


0
0
1
0

 ,

with the gamma matrices given by

γ0 =

(
12×2 0

0 −12×2

)
, γk =

(
0 σk

−σk 0

)
, γ5 =

(
0 12×2

12×2 0

)
,

where σk are the Pauli-matrices. Using this representation explicitly, check that the two scattering
amplitudes Ms,t behave like Ms,t ∼ s in the limit s→∞.

(e) [2 points] How does the total amplitude Mt +Ms change in the high energy limit? Interpret
your result.

Feynman Rules:

Figure 1: Feynman rules for the relevant electroweak vertices, showing a) the WWZ vertex and b) ffV vertices, with gfV =
1
2
If3 −Qf sin

2 θw gfA = 1
2
If3 .

2. [5 points] The Glashow-Iliopoulos-Maiani Mechanism:

In the following, consider only the 3 lightest quarks u, d, s of the Standard Model. Their electroweak
interactions are described by the following Lagrangian density:

L = −
g

2
√

2
W+
µ JµCC −

g

2 cos θW
Zµ J

µ
NC ,

JµCC = u γµ (1− γ5) d′ , JµNC = u γµ (gv − ga γ5)u+ d
′
γµ (gv − ga γ5) d′ ,
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where d′ = d cos θC + s sin θC , with s, d representing the physical eigenstates of the down quark and
strange quark respectively, and θC denoting the Cabbibo angle.

(a) [2 points] Show that both the charged and the neutral currents would lead to flavour-changing
processes, e.g. ones which alter strangeness by ∆S = 1.

(b) [3 points] As there was was no experimental evidence for flavour-changing processes, in 1973,
Glashow, Iliopoulos, and Maiani postulated the charm quark to prohibit these direct flavour
changing neutral currents (FCNCs) in the Standard Model.

Check whether these FCNCs are present when a second quark-doublet is introduced,(
u
d′

)
=

(
u

d cos θC + s sin θC

) (
c
s′

)
=

(
c

dX + s Y

)
.

Determine the appropriate values for X and Y and calculate the unitarity of the mixing matrix
Vdd′,ss′

Vdd′,ss′ =

(
cos θC sin θC
X Y

)
.
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