
Einführung in Theoretische Teilchenphysik

Lectures: Prof. Dr. M. M. Mühlleitner – Exercises: M.Sc. Martin Gabelmann, Dr. Sophie Williamson

Exercise Sheet 10

Hand-in Deadline: Friday 05.02.21, 14:00.
Discussion: Tuesday 09.02.21, Thursday 11.02.21.

1. [13 points] Higgs Production via W Fusion: Higgs production via W fusion is one of the main
Higgs production processes at electron-positron colliders. At leading order, this process is given by a
single Feynman diagram:
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The corresponding Feynman rules are

u(p)
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with the weak coupling constant g ' 0.65 and the vacuum expectation value of the Higgs field v '
246 GeV.
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(a) [2 points] Show the following properties of the chirality projection operators PR
L

= 1±γ5
2 :

(
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R
, PR + PL = 1 , PR − PL = γ5 ,
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L
, γ0

(
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(b) [3 points] Consider first the following sub-diagram:

e−(p1) νe(p3)

W µ
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where the W boson is “amputated” in that the subdiagram is not connected to the rest of the
diagram, i.e. the contraction of the W boson with its polarisation vector is omitted and instead
the matrix element contains an open Lorentz index µ.

i. [1 point] Write down the corresponding matrix elementMµ
1 and calculate q1µMµ

1 , eliminat-
ing the explicit momentum dependence of the expression, assuming also that the neutrino
has a mass mν .

ii. [2 points] What happens in the limit me = mν? Show that for me = mν = 0, q1µMµ
1

vanishes.

(c) [3 points] Considering only massless fermions, me = mν = 0, show that one obtains, after spin
summation, the following for the squared matrix element of the sub-diagram:

∑

s1,s3

|M1|2,µν ≡
∑

s1,s3

Mµ
1M†,ν1 = g2 (pµ1p

ν
3 + pµ3p

ν
1 − p1 · p3gµν + iεµνρσp1,ρp3,σ) .

(d) [5 points] Use this to calculate the spin-averaged squared matrix element of the whole Feynman
diagram. You should obtain

∑
|M|2 =

g8v2

4

1

(q21 −M2
W )2(q22 −M2

W )2
p1 · p4 p2 · p3 .

Hint: Consider first the result of the “middle part” (W propagators, HWW vertex) separately.
The limit ε → 0 of the iε terms in the propagators can be taken immediately. Take care to
contract the correct Lorentz indices.

2. [7 points] Weak Boson Decay: Consider a massive vector field Zµ (with mass M and momentum
k = p1 + p2) and a Dirac fermion field Ψ, interacting via

Lint = ZµΨ̄(gV − gAγ5)Ψ .

The amplitude for the decay of a massive vector boson to two fermions is given by

M = ε∗µv̄2γµ(gV − gAγ5)u1 ,

and this result holds both if Ψ and Ψ̄ are related, e.g. in the decay Z0 → e+e−, and if Ψ̄ is a different
Dirac field than Ψ, e.g. in the decay W+ → e+ν̄. Compute the rates for the decay processes,

(a) W+ → e+ν̄e ,
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(b) Z0 → e+e− ,

(c) Z0 → ν̄eνe ,

neglecting the electron mass. Express your results in GeV.

Hint: start by computing the decay rate |M|2 without specifying the quantities gV,A. Sum over the
final spins and average over the three initial polarisations. Find the total decay rate, Γ, remembering
to divide by the symmetry factor. Generally you should find, for distinguishable massless outgoing
particles, that

Γ =
1

12π
(g2V + g2A)M .

Useful data:

W+ → e+ν̄e gV = gA = g2/2
√

2
Z0 → ν̄eνe gV = gA = e

4 sin θW cos θW
Z0 → e+e− gV = (−1

4 + sin2 θW ) e
sin θW cos θW

, gA = −1
4

e
sin θW cos θW

with g2 = e
sin θW

and e2 = 4πα.
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