

Einführung in Theoretische Teilchenphysik

Lectures: Prof. Dr. M. M. Mühlleitner – Exercises: M.Sc. Martin Gabelmann, Dr. Sophie Williamson

Exercise Sheet 11

<u>Hand-in Deadline</u>: Friday 12.02.21, 14:00. <u>Discussion</u>: Tuesday 16.02.21, Thursday 18.02.21.

1. Higgs Masses in the Two-Higgs Doublet Model:

One of the most minimal extensions of the Standard Model is the Two-Higgs Doublet Model (THDM), where a second Higgs doublet, with identical quantum numbers to the first, is added to the field content. The potential is then given by

$$V = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \Phi_1 \right)^2 \right]$$

where the two doublets , Φ_1 and Φ_2 , and their respective vacuum expectation values (VEVs), are written

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ \frac{v_a + \rho_a + i\eta_a}{\sqrt{2}} \end{pmatrix} , \qquad \langle \Phi_a \rangle = \begin{pmatrix} 0 \\ \frac{v_a}{\sqrt{2}} \end{pmatrix} , \qquad a = 1, 2.$$

with $v_{1,2}$ real. The parameters $m_{11,22}^2$, λ_{1-4} are necessarily real due to the hermiticity of the Lagrangian density. When m_{12}^2 and λ_5 are additionally real, then the potential is CP conserving. The component fields ρ_a and η_a are also real, while ϕ_a^+ are complex, with $(\phi_a^+)^* \equiv \phi_a^-$.

(a) [3 points] The doublet fields develop VEVs at the minimum of the potential, when

$$\left. \frac{\partial V}{\partial \Phi_a^{\dagger}} \right|_{\Phi_i = \langle \Phi_i \rangle} = 0 , \qquad a = 1, 2 .$$

Show that the above leads to the following two conditions that must be satisfied by the potential parameters:

$$m_{11}^2 + \frac{\lambda_1 v_1^2}{2} + \frac{\lambda_3 v_2^2}{2} = m_{12}^2 \frac{v_2}{v_1} - (\lambda_4 + \lambda_5) \frac{v_2^2}{2} ,$$

$$m_{22}^2 + \frac{\lambda_2 v_2^2}{2} + \frac{\lambda_3 v_1^2}{2} = m_{12}^2 \frac{v_1}{v_2} - (\lambda_4 + \lambda_5) \frac{v_1^2}{2} .$$

These equations are known as the *tadpole* equations.

(b) [5 points] To determine the mass terms of the fields, the potential needs to be developed in terms of each of its component fields ρ_a , η_a , ϕ_a^{\pm} .

First consider the general term $\Phi_a^{\dagger}\Phi_b$ expressed in the component fields, to identify possible field combinations. Assume that you are working in a CP-conserving model, and make sure that there are no mixed terms of the form $\rho_a \eta_b$, a, b = 1, 2 which occur.

(c) [5 points] Determine the charged-mass matrix, \mathcal{M}_C , finding all terms of the form $\phi_a^- \phi_b^+$:

$$V|_{\phi^-\phi^+} = (\phi_1^-, \phi_2^-) \mathcal{M}_C \begin{pmatrix} \phi_1^+\\ \phi_2^+ \end{pmatrix}$$

Then eliminate the potential parameters m_{11}^2 and m_{22}^2 using the minimum conditions. You should find something of the form

$$\mathcal{M}_C = X(\lambda_i, v_a, m_{12}^2) \begin{pmatrix} \frac{v_2}{v_1} & -1\\ -1 & \frac{v_1}{v_2} \end{pmatrix} \,.$$

Calculate the eigenvalues of \mathcal{M}_C , finding the squared-masses of the two bosons.

- (d) [1 point] Finally, calculate $\tan \beta$, where β denotes the angle of the rotation matrix U_C which diagonalises \mathcal{M}_C .
- (e) [4 points] Extract all mass terms of the CP-odd components $\eta_a \eta_b$ and write the result in matrix form, \mathcal{M}_P , analogous to the previous task, and determine the two mass eigenvalues. You should again find the mass matrix of the form

$$\mathcal{M}_P = Y(\lambda_i, v_a, m_{12}^2) \begin{pmatrix} \frac{v_2}{v_1} & -1\\ -1 & \frac{v_1}{v_2} \end{pmatrix} \,.$$

Show that the corresponding orthogonal transformation matrix is identical to the one we have already found for the charged case.

(f) [2 points] Now assume that the model is CP-violating, and that m_{12}^2 and λ_5 are complex. Show that in this case the $\rho_{\alpha}\eta_b$ -mixing terms do not vanish. Without explicit calculation, state what this means for the mass eigenstates.