Problem set 5

Submission deadline: 27 June, 16:00 Discussion of solutions: 28 June, 11:30

Problem 12: Comoving gauge

In a general gauge the perturbed energy-momentum tensor is given by 1

$$T^{\mu}_{\ \nu} = \begin{pmatrix} \bar{\rho} & 0 \\ 0 & -\bar{P}\delta^i_j \end{pmatrix} + \begin{pmatrix} \delta\rho & -(\bar{\rho} + \bar{P})(v_i - B_i) \\ (\bar{\rho} + \bar{P})v_i & -\delta P\delta^i_j \end{pmatrix} , \tag{1}$$

where $B_i = \partial_i B$ is a metric perturbation: $\delta g_{0i} = -B_i$. Consider an infinitesimal coordinate transformation

$$X^{\mu} \to \tilde{X}^{\mu} = X^{\mu} + \xi^{\mu}(\eta, \mathbf{x}) \tag{2}$$

with $\xi^0 = T$ and $\xi^i = L^i$. Under this change of coordinates, the energy momentum tensor transforms as

$$T^{\mu}_{\nu}(X) = \frac{\partial X^{\mu}}{\partial \tilde{X}^{\alpha}} \frac{\partial \tilde{X}^{\beta}}{\partial X^{\nu}} \tilde{T}^{\alpha}_{\beta}(\tilde{X}) . \tag{3}$$

a) Show that the coordinate transformation leads to the following transformations of matter perturbations:

$$\delta\rho \to \delta\rho - T\bar{\rho}'$$

$$\delta P \to \delta P - T\bar{P}'$$

$$v_i \to v_i - L_i'$$
(4)

b) Show that the combination

$$\Delta \equiv \frac{\delta \rho}{\bar{\rho}} + \frac{\bar{\rho}'}{\bar{\rho}} (B - v) , \qquad (5)$$

where $v_i = \partial_i v$, and $B_i = \partial_i B$ is a metric perturbation, is invariant under coordinate transformations.

c) Show that it is possible to choose a gauge, where v = B = 0, such that $\Delta = \delta = \frac{\delta \rho}{\bar{\rho}}$. This gauge is called "comoving gauge".

¹For the derivation, see https://www.mv.helsinki.fi/home/hkurkisu/CosPer.pdf, section 9.

Problem 13: Horizon exit

Consider a flat Λ CDM universe with

$$H = H_0 \sqrt{\Omega_{\rm rad} \left(\frac{a_0}{a}\right)^4 + \Omega_{\rm m} \left(\frac{a_0}{a}\right)^3 + \Omega_{\Lambda}} \ . \tag{6}$$

- a) Show that the conformal Hubble rate $\mathcal{H}=aH$ has a minimum for $a< a_0$. Find the corresponding value of a for $\Omega_{\rm m}=0.3,~\Omega_{\Lambda}=0.7,~\Omega_{\rm rad}\approx 0$ and $H_0=70\,{\rm km\,s^{-1}\,Mpc^{-1}}$.
- b) Argue that this means that there are perturbations that were subhorizon at some time in the past but are now superhorizon.
- c) Find the smallest conformal momentum k_{\min} of any perturbation that was subhorizon at some point in the past. Calculate the corresponding physical size of this perturbation in the present universe.
- d) Compare your result to the physical size of perturbations that exit the horizon today.

Problem 14: Tensor perturbations

Let us consider tensor perturbations of the metric

$$ds^{2} = a^{2}(\eta) \left[d\eta^{2} - (\delta_{ij} + \hat{E}_{ij}) dx^{i} dx^{j} \right], \qquad (7)$$

where \hat{E}_{ij} is a traceless and transverse tensor. Any such tensor can be decomposed into a sum of two different polarization states ($\alpha = +, \times$):

$$\hat{E}_{ij}(\eta, \mathbf{x}) = \sum_{\alpha} h_{\alpha}(\eta, \mathbf{x}) e_{ij}^{\alpha} . \tag{8}$$

The linearised Einstein tensor is given by $\delta G_{00} = 0$, $\delta G_{0i} = 0$ and

$$\delta G_{ij} = \frac{1}{2a^2} \left(\partial_{\eta}^2 \hat{E}_{ij} + 2\mathcal{H} \partial_{\eta} \hat{E}_{ij} - \partial_k \partial_k \hat{E}_{ij} \right) . \tag{9}$$

a) Assuming that there are no tensor perturbations in the matter, show that the Einstein equation implies

$$h_{\alpha}''(\eta, k) + 2\mathcal{H}h_{\alpha}'(\eta, k) + k^2 h_{\alpha}(\eta, k) = 0$$
 (10)

- b) Argue that the third term is negligible in the superhorizon regime, leading to the solution $h_{\alpha} = h_{\alpha}^{(i)}$.
- c) Using the ansatz $h_{\alpha}(\eta, k) = f_{\alpha}(\eta, k)/a(\eta)$, show that an approximate solution in the subhorizon regime is given by

$$h_{\alpha}(\eta, k) = \frac{A}{a(\eta)} \cos(k\eta) + \frac{B}{a(\eta)} \sin(k\eta) . \tag{11}$$

d) Find the constants A and B by requiring that the superhorizon solution is recovered in the limit $\eta \to 0$ (you can assume radiation domination for small η).