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Conventional bright field and dark field imaging

Image plane

Bright field image Dark field imaging

Focal length f

2qB 2qB

Diffraction image
Small lens aperture

Image intensity Image intensity

Objective lens

4. Contrast formation (conventional TEM and STEM) and examples 
the imaging of objects in solid state and materials research

Kinematic diffraction
theory: Simple approach
to describing the
interaction between solids
and electrons
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4. Contrast formation (conventional TEM and STEM) and examples 
the imaging of objects in solid state and materials research

Adapted from Williams, Carter, Transmission Electron Microscopy, Fig. 9.17

Focused electron beam

Grid
spools

Beam scans 
sample area 

Measurement of the local transmitted charge 
at (x,y) by STEM detector determines the 
brightness of the pixel at the equivalent 
position (x',y') on the monitor

Monitor, digital image

Synchronization

Sample Monitor(x,y) (x',y)'

Detector

Magnification = L/l
l: Size of the scanned area

L: Size of the monitor
Ll

No lenses required for 
imaging!

Scanning transmission electron microscopy (STEM) in the transmission 
electron microscope: Principle of image formation
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The reciprocity theorem describes conditions under which STEM and TEM 
Illustrations show identical contrast

Equal contrast of brightfield TEM 
and brightfield STEM images when
 ai = ad and << a0 = a p

L. Reimer, H. Kohl, Transmission Electron Microscopy, Fig. 4.20

TEM: 
Illumination of the sample with small 
Beam convergence angle ai
(0.1 - 1 mrad) 
Figure: Lens aperture ao
> 3 mrad significantly larger 
as ai

STEM: 
Illumination of the sample with a 
focused beam (large beam 
convergence angle a )p
Figure: Detection by bright field 
detector with small detection 
angle range ad

TE
M

STEM

Extension to dark field (S)TEM and high resolution
resolving phase contrast images possible

4. Contrast formation (conventional TEM and STEM) and examples 
the imaging of objects in solid state and materials research
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A) B) C)

4.1 Mass thickness contrast

Mass thickness contrast in objects with amorphous structure and crystalline objects 
without strongly excited Bragg reflexes ("kinematic diffraction conditions")  

Goodhew, Humphreys, Beanland, " Electron Microscopy and Analysis ", Fig. 4.9

Electron scattering in different areas of a thin sample
A) Scattering of a few electrons in thin sample areas 
B) Scattering of a larger number of electrons with increasing sample thickness 
C) In the range of the same thickness but higher density, the scattering is even greater
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Atomic scattering factor [Å] 

Atoms with a high atomic number scatter more strongly.

Carter&Williams , Transmission Electron 
Microscopy, Figure 22.4 

4.1 Mass thickness contrast
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Mass thickness contrast in biological objects with amorphous structure

HT29 Intestinal carcinoma cell
with SiO2 - and Pt nanoparticles:
TEM bright field image of a
thin section with homogeneous
thickness ® Image brightness
determined by local material 
densityH. Blank (LEM)

4.1 Mass thickness contrast



Y.M. Eggeler Electron Microscopy I 9

Laboratory for Electron Microscopy

HT29 Intestinal carcinoma cell with SiO2 - and Pt nanoparticles:
TEM bright field image

H. Blank (LEM)

Mass thickness contrast in biological objects with amorphous structure

Pt particles

SiO2 Particles

4.1 Mass thickness contrast
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Bright field image of a bent 
crystalline foil. 

Thickness contours Bending contours 

4.3 Contrasts in perfect crystals

Bright field image of a wedge-
shaped edge of a crystalline sample.
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4.2 Column approximation 

Calculation of image intensity for conventional TEM 
images - (only one reflex for image) 

• Image contrast for TEM bright field imaging: Intensity of
the zero beam at the bottom of the sample as a function of 
the sample location (x,y) (Intensity of the Bragg reflex Ig
for dark-field images)

• Simplification through two-beam conditions 
Observation of the intensity of the Bragg reflex

go II -=1

Fuchs, Oppolzer, Rehme "Particle Beam 
Microanalysis", Fig. 4.30

• Calculation of the local image intensity:
Observation of the amplitudes of the zero beam and the
Bragg reflex at point A on the underside of the sample:
only contribution from I0 and Ig in the CBA triangle

• Replace the acute triangle with a column (in 3
dimensions) with d ≈ !"

#
(for 100 nm sample thickness and qB < 1°, the size of
the column in x and y direction is ≈ 1 nm)

Zero beam intensity
(intensity of the incident electron beam normalized to 1)  

222
sg FGFI =µ

2qB

0k


k


Sample
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• In neighboring columns: Intensities under two-beam
conditions (Ig and thus Io ) are independent of each other 
to a good approximation

• Column dimensions very small
Approximation: Sample composed of many columns

• Image composed of "pixels" I(nx ,n ): y
• à Pixel corresponds to one column
• good description of conventional TEM images

Calculation of the intensity of each column:

• Calculation of Ig and Io for each column using kinematic (or 
dynamic) diffraction theory for the relevant sample 
thickness, imaging vector 𝑔⃗ and excitation error 𝑠

• Assumption: Column is part of a plate that extends 
infinitely in the x and y directions
(otherwise very broad diffraction reflections perpendicular 
to the column)

Sample

Image

Goodhew, Humphreys, Beanland,
"Electron Microscopy and Analysis",
Fig. 4.19

4.2 Column approximation
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4.3 Contrasts in perfect crystals

Calculation of the amplitude of a Bragg reflex (kinematic theory):

By integrating the lattice amplitude over the sample thickness t

( )òµ
t

z dzzisG
0

2exp p

( )
( )2
2

222 sin

z

z
SSg s

tsFGFI
p
p

µ=

Note: constant excitation error rarely fulfilled in practice due to 
bending of thin TEM specimens

(structure factor independent of thickness)

With constant excitation error sz
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A perfect single crystal of constant thickness without any disturbance shows a
homogeneous image brightness.

Intensity differences, i.e. an image contrast when
1. sample is of varying thickness (often the case in practice) 
2. lattice planes change their orientation in relation to the electron beam 

(sample bending, polycrystalline sample)
3. in the presence of defects 

𝐼! = 𝐹"#𝐺# ∝ 𝐹"#
sin# 𝜋𝑠$𝑡
𝜋𝑠$ #

Contrast/image intensity of a perfect (defect-free) single crystal with constant sample thickness?

What causes differences in intensity in the image?

4.3 Contrasts in perfect crystals
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Creation of thickness contours: 
a) schematic representation
b) Bright field image of a Si single crystal with thickness 

contours at the edge of a wedge-shaped sample Sample edge

0.1 µm

Fuchs, Oppolzer, Rehme "Particle Beam Microanalysis", p.186

t = x tan a

1/sz

Sample thickness

Dual beam conditions

Image taken with s =0z

a

b

Wedge-shaped 
sample

Incident 
electron beam

1/sz

4.3 Contrasts in perfect (single) crystals
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Thickness contours
• Sample with wedge-shaped thickness profile: complementary intensity oscillation of

excited Bragg reflex Ig and zero beam I0

Kinematic theory: I0 = 0 for TEM sample thicknesses of tn = 1/(2sz ) + n/sz

• The parameter 1/sz specifies the change in sample thickness between two zero points of
the intensity. The change in sample thickness between two intensity minima (or intensity
maxima) is referred to as the extinction length 𝜉 .

g x= 1/sg

4.3 Contrasts in perfect (single) crystals
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Thickness contours
• The sample thickness at which intensity minima and maxima occur only agrees with the 

prediction of the kinematic diffraction theory if |sz | >> 0 and Ig << I .0

Diffraction image 
shows the setting of 
the excitation error 
|sz | in the two-
beam case.

Dark-field image 
shows thickness 
contours at the edge 
of a wedge-shaped 
sample.

Bragg condition (s400 = 0) s400 > 0 s400 >> 0 

Increasing sample thickness Increasing sample thickness Increasing sample thickness

According to the kinematic theory, no thickness contours are expected in the 
Bragg condition! (à dynamic theory is required)

Ig(400)

I0

(800) Kikuchi line 
pairs 

(400) Kikuchi line 
pairs 

4.3 Contrasts in perfect (single) crystals
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Experimentally observed contrast is in contradiction to kinematic theory
a) Intensity oscillations as a function of thickness t: 1/sz ® ∞ for sz ® 0 
b) Decreasing contrast of the intensity oscillation with increasing sample thickness

sz = 0 and small sz : Application of dynamic diffraction theory necessary

Bragg condition (s400 = 0) 

( )
( )2
2

222 sin

z

z
SSg

s
tsFGFI

p
p

µ=

Two-beam drop in Bragg-
condition with s=0

Intensity oscillations

Increasing sample thickness

Dark field imaging 

4.3 Contrasts in perfect (single) crystals
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Qualitative differences between kinematic and dynamic diffraction theory

A0 ≠ constant with increasing sample thickness
a) Increasing intensity of the stimulated Bragg 
reflex
b) Multiple electron scattering: Electrons are 
scattered "back" from the Bragg reflex into the 
zero beam.

Amplitude of the zero beam A0 is constant in good 
approximation, with increasing specimen thickness
a) Only single electron scattering (electrons are only 

scattered once).
b) Electron losses of the zero beam are neglected. 

Dynamic diffraction theoryKinematic diffraction theory

Ag = ? A0 = ?
A0 ≡ 1

A =10 A =10

4.3 Contrasts in perfect crystals

Ag = ∑! 𝑑𝐴"
(!)
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Result of dynamic diffraction theory (solution of the Schrödinger equation for two-beam 
conditions using the Bloch threshold approach in Chapter 5): 
Formally identical to the result of the kinematic diffraction theory
Replacement of sz by effective excitation error sz

( )
( )2
2

2 sin

z

z
Sg

s

tsFI
 

 
p

p
µ

l Electron wavelength
mrel Relativistic electron mass 
sz Experimental excitation error (as opposed to effective excitation error ) 
Ve Volume of the unit cell
Vg Coefficient of the electrostatic potential for excited reflex 
FS,g Structure factor for the excited Bragg reflex with reciprocal lattice vector
qB Bragg angle for excited Bragg reflex

 
For sz = 0 (Bragg condition exactly fulfilled): Periodicity of the thickness contours with xg

Typical extinction lengths for electrons with 100 keV to 400 keV: 10 nm – several 100 nm

Extinction length xg

with 𝜉$ =
𝜋 𝑉% cos𝜃"

𝜆𝐹&,$
=

ℎ#

2𝜆𝑚(%)𝑒𝑉$

sz
g

g

with $𝑠% = 𝑠%& +
1
𝜉"&

4.3 Contrasts in perfect crystals



Y.M. Eggeler Electron Microscopy I 21

Laboratory for Electron Microscopy

B. Fultz, J.M. Howe, Table 7.1
face-centered cubic (fcc) body-centered

cubic (bcc) 
Diamond 
structure

ghkl

4.3 Contrasts in perfect (single) crystals
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Effective extinction length x g,eff

𝑤 = 𝑠*𝜉$with

w = sz xg >> 1 kinematic theory xg = 1/s z
w = 0 dynamic theory xg
0 < w < 5 Extinction length given by 

Reduction of contrast with increasing sample thickness  

´´,

111

ggabsgg

i
xxxx

+=®

Formal description by complex scattering potential / complex extinction length

gg xx  1.0=¢¢Typical (empirical) value:

Actual causes of the decrease in intensity in TEM images with increasing sample thickness 
("absorption")
• Electrons that are scattered at large angles are suppressed by the lens diaphragm 
• Dynamic diffraction theory: different attenuation of Bloch waves

𝜉",()) =
1
$𝑠%
=

𝜉"
1 +𝑤&

4.3 Contrasts in perfect (single) crystals
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Fuchs, Oppolzer, Rehme "Particle Beam Microanalysis", p. 188

sz ≠0
w=1

s =0z
w=0

Dynamic diffraction theory through
Solution of the Schrödinger equation
for a two-beam case:
Interference of 2 Bloch waves with
slightly different wave
lengths and different 
strong damping

gzsw x=
Calculation of the reduction in contrast between 
light and dark thickness contours

𝜉",()) =
1
$𝑠%
=

𝜉"
1 +𝑤&

4.3 Contrasts in perfect (single) crystals
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Bending contours

( )
( )2
2

 
  sin

z

z
g

s
tsI

p
p

µ

Goodhew, Humphreys, Beanland, "Electron Microscopy and Analysis", Fig. 4.14

4.3 Contrasts in perfect (single) crystals
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1 µm

(400) dark field

Heavily bent thin foil: bright field image 
[100] Zone axis 200 kV

Heavily bent thin foil: bright field image 
[100] Zone axis 200 kV

4.3 Contrasts in perfect (single) crystals: Bending contours
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1 µm

(400) dark fieldBragg condition 
fulfilled

Bragg condition: 
s=0

4.3 Contrasts in perfect (single) crystals: Bending contours
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1 µm

(400) dark field ( )
( )2
2

 
  sin

z

z
g

s
tsI

p
p

µ for constant t

𝜉" =
𝜋 𝑉( cos𝜃*

𝜆𝐹+,"
With 

Extinction length of 
the Bragg reflex g 

In kinematic theory, the maximum of the rocking 
curve is at sz =0, i.e. exactly in the Bragg condition. 

The minima (zeros) of the rocking curve / bending 
contour are enclosed: 

𝑠% =
𝑛
𝑡 , 𝑛 = ±1,±2,……

Bragg condition 
fulfilled

Bragg condition: 
s=0

4.3 Contrasts in perfect (single) crystals: Bending contours
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4.3 Contrasts in perfect (single) crystals
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4.3 Contrasts in perfect (single) crystals

(-400) DF (thin sample point) (-400) DF (thick sample point) 
Kinematic bending contour Dynamic bending contour 

( )
( )2
2

 
  sin

z

z
g

s
tsI

p
p

µWell described by Contradicts 
( )

( )2
2

 
  sin

z

z
g

s
tsI

p
p

µ

𝑠! 𝑠!
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L = 985 nm 

d004 = 0.25 · aSi = 0.13575 nm

λ= 0.00198 nm 

à R ≈ 68 µm

sin𝜃* =
𝐿/2
𝑅 2𝑑 sin𝜃* = 𝜆and

Radius of curvature: 𝑅 =
𝐿 > 𝑑
𝜆

Bent foil

(Bragg condition) 

4.3 Contrasts in perfect (single) crystals
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Kinematic theory vs. dynamic theory

Vertical cut = thickness 
contours

Horizontal cut = 
bending contours

Bragg condition

Vertical cut = thickness 
contours

𝐼$ ∝ 𝐹&#
sin# 𝜋𝜏𝑤

𝑤# 𝐼$ ∝ 𝐹&#
sin# 𝜋τ 1 +𝑤#

𝑤# + 1

t = 2xg

t = 1.5xg

t = 0.1xg

w → 1+𝑤#
 

Kinematic theory is a good approximation for w >> 1 and/or t << 𝜉$,%++

𝑤 = 𝑠!𝜉" 𝑤 = 𝑠!𝜉"

At s=0, the local thickness 
t of the sample can be 
determined using 
dynamic theory via Ig
maxima/minima. 

4.3 Contrasts in perfect (single) crystals
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Bending contours in a SiC crystal Thickness contours in a GaAs layer on Si substrate

Contrasts in the perfect crystal: thickness and bending contours

Determination of local specimen thickness and specimen curvature based on thickness 
contours and bending contours. 

4.3 Contrasts in perfect (single) crystals
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4.3 Contrasts in perfect (single) crystals

§ The reciprocity theorem describes conditions under which STEM and TEM images show identical contrast. In TEM, an 
objective aperture is used in the back focal plane to isolate certain reflections which are then used to generate the (BF/DF)
image. In STEM, an electron ring detector is used to detect the scattered electron intensity signal for each grid point in the 
sample.  

§ Mass-thickness contrast: Is a change in intensity that occurs due to more strongly scattering areas (e.g. foreign phases) in 
the sample or an increase in sample thickness. A pure mass contrast (atomic scattering factor) is only present in amorphous 
samples (without elastic scattering effects), often the case in biological samples. 

§ Column approximation is used to calculate Ig and Io using kinematic or dynamic diffraction theory for the relevant sample 
thickness t, imaging vector g and excitation error s. 

§ Kinematic description of the intensity of the deflected beam: :  𝐼! = 𝐹"#𝐺# ∝ 𝐹"#
$%&! '(")

'(" !

§ With const. Deviation parameter s as a function of the sample thickness results in a simple sin2 dependency. With periodic 
zeros at a distance of 1/s. I0 and Ig are complementary. 

§ Kinematic description only fulfilled if s >> 0. According to the kinematic theory, no thickness contours are expected in the 
Bragg condition (s=0), but some are observed experimentally, therefore the application of the dynamic theory is necessary.

§ Result of the dynamic diffraction theory: Formally identical to the result of the kinematic diffraction theory. Replacement of sz

by effective excitation error: 1𝑠* = 𝑠*# +
+
,#!

§ If s ≠ 0, but still not so large that the requirements of the kinematic theory are met, we use the following for the effective 
extinction length: 𝜉!,.// =

+
("
=

,#
+01! and introduce a deviation parameter , which represents a normalized excitation error. 

With dynamic theory and characteristic extinction length, sample thickness at s=0 can be determined via the intensity 
minima or maxima of the thickness contours. 

§ Bending contours (const. t and change of s) : Frequently occurring contrast phenomenon in crystalline samples: Formation 
of bending contours in areas where the bending condition is locally fulfilled due to the bending of the sample. They help to 
roughly adjust for certain crystallographic orientations. 

§ The sample curvature can be determined via bending contours.


