Bitte nehmen Sie an der Lehrevaluation teil:

Lehrevaluation zur Elektronenmikroskopie 2 Vorlesung und Übung:

Vorlesung

https://onlineumfrage.kit.edu/evasys/public/ online/index/index?online_php=&p=X4PNR &ONLINEID=19092053070286785002076 6684166485211737381

Übung

https://onlineumfrage.kit.edu/evasys/public/ online/index/index?online_php=&p=J16M4 &ONLINEID=988071132850511786431506 99625388215884683

Vielen Dank!!!

Yolita Eggeler Laboratorium für Elektronenmikroskopie (LEM), yolita.eggeler@kit.edu

- 2. Rasterionenmikroskopie und Strukturierung mit fokussierten Ionenstrahlen (FIB: focused-ion beam)
- 3. Raster transmissionselektronenmikroskopie
- 4. Analytische Verfahren in der Raster- und Transmissionselektronenmikroskopie
- 4.1 Gegenüberstellung Raster- und Transmissionselektronenmikroskopie
- 4.2 Entstehung und Eigenschaften von Röntgenstrahlung in Festkörpern
- 4.3 Energiedispersive Röntgenanalyse (EDXS: energy-dispersive X-ray spectroscopy)
- 4.4 Wellenlängendispersive Röntgenanalyse

(WDXS: wavelength-dispersive X-ray spectroscopy)

- 4.5 Elektronenenergie-Verlustspektroskopie
 - (EELS: electron energy loss spectroscopy)

Herstellung von Nanostrukturen durch Sputtererosion

- Minimale Strukturgrößen bestimmt durch Ga+-Strahlprofil
- Herstellung von Strukturen mit großem Aspektverhältnis von 10 möglich (Aspektverhältnis: Verhältnis von Strukturtiefe/Strukturbreite)

Elektronenmikroskopie II / Yolita Eggeler

Grundlagen der Sputtererosion

Sputterrate (Anzahl der abgetragenen Oberflächenatome / Zeit)

$$\frac{dN}{dt} = Y \frac{dN_0}{dt}$$

 $\frac{dN_0}{dN_0}$: Auftreffrate der Primärionen

Y: Proportionalitätskonstante = Sputterausbeute

(Anzahl abgetragener Oberflächenatome / Ion)

Abschätzung der Sputterausbeute (Targetmaterial aus einem Element)

E₀: Primärionenenergie

$$\frac{dE}{dz}$$
: Kernabbremsung

$$Y(E_0) \propto \frac{\left[\left(\frac{dE}{dz}\right)_n\right]_{z=0}}{E_b}$$

E_b: Bindungsenergie eines Oberflächenatoms (näherungsweise Sublimationsenergie)

 $E_{b,Si} = 7.8 \text{ eV}, E_{b,Al} = 3.8 \text{ eV}$

Elektronenmikroskopie II / Yolita Eggeler

 dz_n

Grundlagen der Sputtererosion

Abb. 2.3: Theoretische Sputterausbeute von Silicium (durchgezogene Linie) und Aluminium (gestrichelte Linie) in Abhängigkeit von der Energie der einfallenden Galliumionen

S. Lipp, "Untersuchungen von Ätz- und Abscheidungsprozessen im fokussierten Ionenstrahl", Abb.2.3

- Anstieg von Y bei kleinen E₀ durch Zunahme des Energieübertrags an Oberflächenatome
- Abnahme von Y bei größeren Ionenenergien durch Zunahme der Eindringtiefe (reduzierte Streuwahrscheinlichkeit)

Grundlagen der Sputtererosion

Fig. 2-64.

Sputter yield Y (atoms/ion) of an Si (111) surface as a function of the angle of incidence ψ for 30 keV Ar⁺ ions; tilt axis $\langle 112 \rangle$ [2-77]. At the lower specimen temperature (200°C) the single crystal surface is amorphized by the ion bombardment.

0 Grad entspricht senkrechtem Einfall

• Sputterausbeute als Funktion des Einfallswinkels Φ bei amorphen Oberflächen

 bei kristallinen Objekten: Channeling Effekt bei niedrig indizierten Kristallrichtungen

Fuchs, Oppolzer, Rehme, "Particle Beam Microanalysis", Abb.2.64

Sputtererosion unter Channeling Bedingungen

Figure 2-19. Secondary electron FIB image of milled trenches in a Cu bicrystal indicating differences in sputtering yield with channeling effects.

Bessere Qualität der gefrästen Strukturen bei Ausrichtung des Ionenstrahls parallel zu niedrig-indizierter Kristallrichtung, z.B. [100] oder [110]

Erzeugung von Sekundärelektronen (SE) und Abbildung mit SE

- SE Erzeugung durch Ionen in Analogie zu SE Erzeugung durch Elektronen
 Ionen-induzierte SE Abbildungen
- Auflösung begrenzt durch minimalen Ionenstrahldurchmesser von ca. 3-4 nm

• γ = SE Ausbeute durch Ionen: Anzahl der Sekundärelektronen/Ga⁺-Ion (auch von Proben-

Fig. 1 Relative SE intensities as a function of Z_2 for the Ga-SIM and SEM images.

Ishitani et al., J. Electron Microscopy 51 (4), 207 (2002)

Vergleich SE Ausbeute: 30 keV Ga+-Ionen γ 5 keV Elektronen δ

- Ordnungszahlabhängigkeit für SE Ausbeute durch Elektronen und Ga⁺-Ionen gegenläufig
- SE Ausbeute f
 ür Ga⁺-Ionen durch Konzentration der Leitungsbandelektronen beeinflusst (vergl. Al, Si, Ni)
- → Weitere Untersuchungen des Verhaltens der SE Emission notwendig

Vergleich Ga+-induzierte und Elektronenstrahl-induzierte SE Abbildung

Objekt: ca. 10 nm dünner Kohlenstofffilm auf Cu-Netz

Frage: Warum invertiert SE Kontrast bei Ionen-induzierter SE Abbildung im Vergleich zu Elektronen-induzierter SE Abbildung? Die gefrästen Strukturen im C-Film sind nicht von Interesse.

Ga+-induzierte SE Abbildung: Channeling Kontrast

- Ausgeprägter Channelling Kontrast mit Sekundärelektronen
- geringere Auflösung als bei Elektronenstrahl-induzierter SE Abbildung
- Abbildung mit Schädigung der Oberfläche und Materialabtrag verbunden!

Erzeugung von Gitterdefekten/Schädigung

Anzahl der verlagerten Atome (Abschätzung)

$$V_d = \frac{E_0}{E_b}$$

E₀: Primärionenenergie E_b: Bindungsenergie der Atome

- Ein 30 keV Ga⁺-Ionen kann bis zu 1923 Si-Atome verlagern (E_{b,Si}=15.6 eV)!
- ein verlagertes Atom mit hinreichend hoher kinetischer Energie kann weitere Atome verlagern — Schädigungskaskade
- Überlappung von Schädigungskaskaden für ca.10¹⁴ Ionen/cm²

Erzeugung von Gitterdefekten/Schädigung

- Primäre Prozesse: Erzeugung von Leerstellen und Zwischengitteratomen (Frenkel Paare), Implantation
- Entstehung einer Schädigungskaskade: Erzeugung von weiteren Defekten durch Zwischengitteratome mit hinreichend großer kinetischer Energie
- Amorphisierung bei Überlappen von Schädigungskaskaden, (Teil)kristallisation ist möglich durch Wärmeerzeugung während der Schädigung

L.A. Giannuzzi, F.A. Stevie, "Introduction to Focused Ion Beams ", Abb.2.21

Figure 2-21. MD simulation of a 10 keV Au particle on a (100) Au surface (Averbeck et al., 1994, used with permission, Journal of Applied Physics, © American Institute of Physics)

Ionenstrahl (FIB)-induzierte Abscheidung von Materialien

Anwendungen:

- Reparatur von Fotolithographie- und Röntgenmasken
- Modifikation von Bauelementen
- Schutzschichten bei der TEM Probenpräparation mit FIB
- Kontaktierung von Nanostrukturen (z.B. Nanodrähten)

•

FIB-induzierte Abscheidung, FIB-induziertes Ätzen

Zum Beispiel Vorläufergas für W-Abscheidung: W(CO)₆ Vorläufergas für Pt-Abscheidung (CH₃)₃(CH₃C₅H₄)Pt Ätzgas XeF_{2 (verstärkt die Sputtererosion, größer Sputterraten)}

L.A. Giannuzzi, F.A. Stevie, "Introduction to Focused Ion Beams ", Abb.3.2

Figure 3.2. Schematic drawing of deposition/controlled material removal process. The enhanced etch process is shown. If adsorbed gas decomposes to non-volatile products, then deposition will take place.

- Zufuhr eines Vorläufergases (Precursors) oder eines Atzgases mit einem Gasinjektionssystem in die Nähe der Probenoberfläche
- Adsorption von Gasmolekülen an der Probenoberfläche
- Wechselwirkung zwischen Ga+-Ionen und adsorbierten Molekülen Zerfall der Gasmoleküle
- Abscheidung nichtflüchtiger Komponenten durch Desorption flüchtiger Anteile des Vorläufergases
- Verstärkter Materialabtrag (Sputtererosion) durch Ätzgas

FIB-induzierte Abscheidung, CAD (computer-aided design) Abscheidung

z. 4. Bent hollow tube. The outer diameter is 4.8 $\mu{\rm m};$ total height is 14.5 $\mu{\rm m}.$

Figure 4-9. 3D FIB fabrication performed automatically from the CAD drawing in figure 8.

L.A. Giannuzzi, F.A. Stevie, "Introduction to Focused Ion Beams", Fig. 4.9

Zielpräparation von elektronentransparenten Proben für die (Raster)Transmissionselektronenmikroskopie

E. Müller, LEM

Am Ende weitere Dünnung (Politur) bis auf ca. 50 – 100 nm Dicke mit niederenergetischen Ga⁺-Ionen unter streifendem Einfall

Elektronenmikroskopie II / Yolita Eggeler

Rasterionenmikroskopie

- Rasterionenmikroskope sind vielseitig einsetzbar und werden meistens in Kombination mit Rasterelektronenmikroskopen betrieben (*FIB/SEM-Systeme*)
- Schädigung durch hochenergetische Ionen: Bildung von Frenkelpaaren (Paaren aus Leerstellen und Zwischengitteratomen), Schädigungskaskaden durch Zwischengitteratome mit hohen kinetischen Energien, Amorphisierung des Materials bei hohen Ionendichten pro Fläche

Yolita Eggeler Laboratorium für Elektronenmikroskopie (LEM), yolita.eggeler@kit.edu

- 2. Rasterionenmikroskopie und Strukturierung mit fokussierten Ionenstrahlen (FIB: focused-ion beam)
- 3. Raster transmissionselektronenmikroskopie
- 4. Analytische Verfahren in der Raster- und Transmissionselektronenmikroskopie
- 4.1 Gegenüberstellung Raster- und Transmissionselektronenmikroskopie
- 4.2 Entstehung und Eigenschaften von Röntgenstrahlung in Festkörpern
- 4.3 Energiedispersive Röntgenanalyse (EDXS: energy-dispersive X-ray spectroscopy)
- 4.4 Wellenlängendispersive Röntgenanalyse

(WDXS: wavelength-dispersive X-ray spectroscopy)

- 4.5 Elektronenenergie-Verlustspektroskopie
 - (EELS: electron energy loss spectroscopy)

STEM: scanning transmission electron microscopy

Ziele dieses Kapitels:

- Vorinformation zum 4. Kapitel, in der die Elektronenenergie-Verlustspektroskopie (EELS: electron energy loss spectroscopy) vorgestellt wird
- EELS Untersuchungen sind nur an dünnen Proben im Transmissionselektronenmikroskop möglich und nicht an massiven (bulk) Proben im Rasterelektronenmikroskop
- Darstellung der technische Realisierung von STEM im Transmissionselektronenmikroskop
- Nicht Kontrastentstehung in STEM Abbildungen → Elektronenmikroskopie I

Ähnlichkeiten	Unterschiede
Elektronenquelle → erzeugt Elektronenstrahl	REM (1-30kV): Untersuchung von
Linsensystem → bildet das Bild der Elektronenquelle auf der Probe ab.	Bulk-Proben → rückgestreute/seku ndäre Elektronen werden detektiert
Elektronensonde rastert über die Probe→ Ablenkungsspulen für die Abtastung	STEM (30-300kV): elektronentranspar ente Proben
Gestreute Elektronen werden detektiert	durchstrahlt → Detektoren sind
Bild: Intensität in Abhängigkeit von der Position der Sonde dargestellt.	hinter der Probe platziert.

Experimentelle Parameter

- 80 keV 300 keV Elektronenergie
- Feldemissionskathode (~ 0.8 eV FWHM der Elektronenenergieverteilung)
- Beste Geräte: Auflösung 0,5 Å bei sehr dünnen (!) Proben Elektronenstrahldurchmesser < 0,5 Å

Kombiniertes (Raster)Transmissionselektronenmikroskop TEM/STEM Philips CM 20 mit (abbildendem) Elektronenenergie-Verlustspektrometer (Abbildung rechts)

Elektronenmikroskopie II / Yolita Eggeler

12 nm

Strahlaufweitung in Si als Funktion der Probendicke bei 100 keV Primärelektronenenergie, massive Probe, dünne Folie mit 200 nm bzw. 50 nm Dicke

STEM Auflösung von Durchmesser des Elektronenstrahls und Probendicke bestimmt

Elektronenmikroskopie II / Yolita Eggeler

Prinzip der Bilderzeugung

STEM-Betrieb im Transmissionselektronenmikroskop

- Erzeugung eines fokussierten Elektronenstrahls ("Sonde")
- Konvergenzwinkel der Sonde durch Durchmesser der C2-Blende bestimmt
- Strahl muss während des Scannens parallel zur optischen Achse sein: Rasterung der konvergenten Sonde zur Bilderzeugung im STEM-Modus durch zwei Paare von x/y-Scanspulen zwischen unterster Kondensorlinse und Objektivlinse
- Probe befindet sich im Feld der Objektivlinse
- In der Brennebene der Objektivlinse entsteht das Beugungsbild (CBED: convergent beam electron diffraction) der Probe
- abbildendes Linsensystem (Projektivlinsen) bildet Beugungsbild in die Detektorebene ab, Variation der Vergrößerung des Beugungsbildes über große Bereiche möglich

Abhängigkeit der STEM-Abbildungsbedingungen / detektierte Streuwinkelbereiche von der ausgewählten Kameralänge (Vergrößerung des Beugungsbildes)

Elektronenstrahldurchmesser

- Annahme eines Gauss-förmigen
 Intensitätsprofil des Elektronenstrahls
- Elektronenstrahldurchmesser (FWHM) auf der Probe bestimmt durch Öffnungs-fehler der fokussierenden Linse (*d_s*), Beugung an der Beleuchtungsblende (*d_b*), Eigenschaften der Elektronenquelle (*d₂*)
- Farbfehler bei hohen E₀ vernachlässigbar

$$d_p = \left(d_2^2 + d_S^2 + d_c^2 + d_b^2\right)^{1/2}$$

Williams, Carter, Transmission Electron Microscopy, Abb. 5.9

- α_{p} : Strahlkonvergenz(halb)winkel
- β: Richtstrahlwert
- i: Strahlstromdichte
- C_s: Öffnungsfehlerkonstante

λ: Wellenlänge

$$C_0 = \frac{2}{\pi} \left(\frac{i}{\beta}\right)^2$$

Kleinstmögliche Strahldurchmesser sind um 0.3 Å in Mikroskopen mit Aberrationskorrektor ($C_s < 10 \ \mu m$) \rightarrow Limitierung des Strahldurchmessers duch C_c

Elektronenmikroskopie II / Yolita Eggeler

Williams, Carter, Transmission Electron Microscopy, Abb. 5.10

Berechnung der drei relevanten Beiträge zum Strahldurchmesser als Funktion des Konvergenz-Halbwinkels α_p für ein 200 keV Feldemissions-Rastertransmissionselektronenmikroskop mit minimalem Elektronenstrahldurchmesser ~1 nm für α < 10 mrad.

- Doppelkipphalter für elektronentransparente Proben
- Durchmesser der präparierten Probe 3 mm

STEM-Bilderzeugung

- a) Positionierung eines Hellfeld (BF)- und ringförmigen Dunkelfeld (ADF)-Detektors in einer zur hinteren Brennebene der Objektivlinse konjugierten Ebene
- b) ADF-STEM Bild von Goldteilchen auf Kohlenstofffilm
- c) BF-STEM Bild

Williams, Carter, Transmission Electron Microscopy, Abb. 9.18

Rasterionenmikroskopie

- Rasterionenmikroskope sind vielseitig einsetzbar und werden meistens in Kombination mit Rasterelektronenmikroskopen betrieben (*FIB/SEM-Systeme*)
- Schädigung durch hochenergetische Ionen: Bildung von Frenkelpaaren (Paaren aus Leerstellen und Zwischengitteratomen), Schädigungskaskaden durch Zwischengitteratome mit hohen kinetischen Energien, Amorphisierung des Materials bei hohen Ionendichten pro Fläche
- Präparation von dünnen Lamellen für die (Raster)Transmissionselektronenmikroskopie)

Rastertransmissionselektronenmikroskopie

- Prinzip der Bilderzeugung vergleichbar mit Rasterelektronenmikroskopie (Rastern des fokussierten Elektronenstrahls, Detektoren *unterhalb* der Probe)
- Wichtigste Unterscheide: dünne elektronentransparente Proben, hohe Elektronenenergie (80 – 300 keV), Beugungsbilder verfügbar
- Kleinere Strahldurchmesser erreichbar limitiert durch Öffnungsfehler (ca. 1 Å), mit Öffnungsfehlerkorrektur (0.3 Å) und Limitierung durch den Farbfehler
- Deutlich höhere räumliche Auflösung als in der REM durch dünne Proben und kleineren Strahldurchmesser

4.1 Gegenüberstellung Raster- und (Raster)Transmissionselektronenmikroskopie

4.1 Gegenüberstellung Raster- und (Raster)Transmissionselektronenmikroskopie

4.2 Entstehung und Eigenschaften von Röntgenstrahlung in Festkörpern

4.2 Entstehung und Eigenschaften von Röntgenstrahlung in Festkörpern

