Yolita Eggeler Laboratorium für Elektronenmikroskopie (LEM), yolita.eggeler@kit.edu

- 2. Rasterionenmikroskopie und Strukturierung mit fokussierten Ionenstrahlen (FIB: focused-ion beam)
- 3. Raster transmissionselektronenmikroskopie
- 4. Analytische Verfahren in der Raster- und Transmissionselektronenmikroskopie
- 4.1 Gegenüberstellung Raster- und Transmissionselektronenmikroskopie
- 4.2 Entstehung und Eigenschaften von Röntgenstrahlung in Festkörpern
- 4.3 Energiedispersive Röntgenanalyse (EDXS: energy-dispersive X-ray spectroscopy)
- 4.4 Wellenlängendispersive Röntgenanalyse

(WDXS: wavelength-dispersive X-ray spectroscopy)

- 4.5 Elektronenenergie-Verlustspektroskopie
 - (EELS: electron energy loss spectroscopy)

4.1 Gegenüberstellung Raster- und (Raster)Transmissionselektronenmikroskopie

4.1 Gegenüberstellung Raster- und (Raster)Transmissionselektronenmikroskopie

Pauli-Prinzip

Kennzeichnung elektronischer Zustände von Elektronen durch Quantenzahlen *n*: Hauptquantenzahl

I, s: I: Bahndrehimpuls- ($I \le n - 1$), s: Spinquantenzahl

Gesamtdrehimpuls-Quantenzahl j = s + I

m: magnetische Quantenzahl

Besetzung von elektronischen Zuständen: mindestens in 1 Quantenzahl unterschiedlich

Auswahlregeln für strahlende Übergänge (empirisch)

- Hauptquantenzahl n nimmt um mindestens 1 ab
- − $\Delta n = 1$ am häufigsten → hohe Intensitäten der α-Linien (insbesondere K_α-Linien)
- keine strahlenden Übergänge innerhalb einer Schale (keine Intraschalenübergänge)
- Drehimpulsquantenzahl / ändert sich immer um -1 oder +1
- Gesamtdrehimpulsquantenzahl j bleibt konstant oder ändert sich um +1 oder
 -1

Übergangsnomenklatur

- Übergang von der L-Schale (n=2) auf die K-Schale (n=1): K_{α} -Übergang mit Unterscheidung zwischen $K_{\alpha 1}$ (L₂ nach K) und $K_{\alpha 2}$ (L₃ nach K)
- K_β-Linien: Übergänge von der Mauf die K-Schale
- analog L_α-Linien durch Übergänge von der M- in die L-Schale
- Verbot bestimmter strahlender Übergänge durch Auswahlregeln, z.B. Übergänge von L₁ (also 2s) nach K (1s).

EM

Energien charakteristischer Röntgenstrahlung

Bindungsenergien für Elektronen in Gold (Z = 79)

- Elektronen in einem (freien) Atom mit scharf definierten Energieniveaus
- Mit abnehmendem Abstand vom Atomkern Zunahme der Bindungsenergie
- Elektronen der K-Schale: Bindungsenergie 80,7 keV, L-Schale: 14,4 keV (L₁), 13,7 keV (L₂) und 11,9 keV (L₃)
- Übergang von L₃ in ein unbesetztes
 K-Niveau → Röntgenphoton mit
 Energie von 80,7 keV 11,9 keV = 68,8 keV

Fuchs, Oppolzer, Rehme, "Particle Beam Microanalysis", S.19

K-Elektronen in Gold können im Rasterelektronenmikroskop nicht angeregt werden! Detektoren sind nicht sensitiv für Röntgenenergie > 20 keV

Z-Abhängigkeit der Röntgenenergie

- Anstieg der Energie der charakteristischen Röntgenstrahlung mit der Kernladungs(Ordnungs)zahl Z durch Zunahme der Coulomb-Kraft und damit Bindungs-energie zwischen Kern und Elektronen
- Bei Anregung eines Elektrons aus einer Koder L-Schale: Beobachtung von Serien von Röntgenlinien (Kaskaden) bei Elementen mit hohen Ordnungszahlen

Moseleysches Gesetz

Zusammenhang zwischen Kernladungszahl Z eines Elementes und der Energie von Linien gleichen Typs (empirisch gefunden)

$$E_{K\alpha 1} = \frac{3}{4}hR(Z-1)^2$$

R: Rydberg Konstante $3,29 \cdot 10^{15}$ s-1 *h*: Planck Konstante $4,135 \cdot 10^{-15}$ eV \cdot s

Fuchs, Oppolzer, Rehme, "Particle Beam Microanalysis", Abb. 2.44

Energie der K_{α 1}- und L_{α 1}-Röntgenlinien als Funktion der Kernladungszahl *Z*

Element	Atomic number	K _α	K _β	(*)	L _a	L_{β_1}	(*)	L_{β}	(*).	L _y	(*)	М
Nb	41	16,581	18,700	(12)	2 166	2 2 5 7	(45)					0 355
Mo	42	17 441	19 599	(25)	2 293	2 394	(45)					0.331
Tc	43	18.325	20.608	(24)	2.424	2.536	(45)					0.551
Ru	44	19.233	21.646	(24)	2.558	2.683	(45)					0.461
Rh	45	20.165	22.712	(24)	2.696	2.834	(40)	3.001	(25)			0.496
Pd	46	21.121	23.807	(26)	2.838	2.990	(40)	3.171	(25)			0.532
Ag	47	22.101	24.921	(26)	2.984	3.150	(40)	3.347	(25)			0.568
Cd	48	23.106	26.167	(27)	3.133	3.316	(42)	3.528	(25)			0.606
In	49	24.136	27.346	(27)	3.286	3.487	(75)	3.713	(17)			0.000
Sn	50	25.191	28.564	(28)	3.443	3.662	(75)	3.904	(17)			0.691
Sb	51	26.271	29.805	(28)	3.604	3.843	(75)	4.100	(17)			0.733
Te	52	27.377	31.097	(29)	3.769	4.029	(75)	4.301	(17)			0.778
I	53	28.508	32.402	(29)	3.937	4.220	(75)	4.507	(17)			
Xe	54	29.666	33.737	(30)	4.109	4.42	(50)	4.72	(20)			
Cs	55	30.851	35.104	(30)	4.286	4.619	(50)	4.935	(20)			
Ba	56	32.062	36.504	(31)	4.465	4.829	(50)	5.193	(20)			0.972
La	57	33.299	37.951	(31)	4.650	5.041	(50)	5.383	(20)			0.833
Ce	58	34.566	39.232	(32)	4.839	5.261	(50)	5.612	(20)			0.883
Pr	59	35.860			5.033	5.488	(50)	5.849	(20)			0.929
Nd	60	37.182			5.229	5.721	(50)	6.088	(20)			0.978
Pm	61	38.532			5.432	5.960	(50)	6.338	(20)			
Sm	62	39.911			5.635	6.204	(50)	6.586	(20)			1.081
Eu	63				5.845	6.455	(50)	6.842	(20)			1.131
- Gd	64				6.056	6.712	(50)	7.102	(20)			1.185
ТЬ	65				6.272	6.977	(50)	7.365	(20)			1.240
Dy	66				6.494	7.246	(50)	7.634	(20)			1.293

Energien der charakteristischen Röntgenlinien der Elemente Nb bis Dy (* genäherte Intensität der Hauptlinie im Vergleich zur Nebenlinie der Serie)

M.H. Loretto, Electron Beam Analysis of Materials, Tab. E.2

4.2 Entstehung und Eigenschaften von Röntgenstrahlung

Bremsspektrum (*kontinuierliches Spektrum*)

- Abbremsen (Richtungsänderung) der Elektronen im Coulomb-Feld des Atomkerns: freiwerdende Energie wird in Form von Röntgenstrahlung abgegeben
- Kontinuierliches Spektrum der Bremsstrahlung von Energie der Primärelektronen bis hin zu niedrigsten Energien
- Wahrscheinlichkeit für Erzeugung von Bremsstrahlung mit Energie E:

Kramers-Gleichung

$$N(E) = \frac{KZ(E_o - E)}{E}$$

K: Kramers-Konstante, *Z*: Ordnungszahl, *E*₀: Primärelektronenenergie, N: Anzahl der Röntgenquanten

 unterhalb 1,5 keV nimmt Bremskontinuum stark ab durch Absorption in der Probe und geringe Detektoreffizienz)

Qualitative EDXS (energy-dispersive X-ray spectroscopy) Analyse: Vergleich der Energie von gemessenen Röntgenlinien mit tabellierten Daten

EDXS Spektrum von Molybdän mit Bremsspektrum und charakteristischen Röntgenlinen aufgenommen mit 35 keV Primärelektronen