Elektronenmikroskopie II

TT. Prof. Dr.-Ing. Yolita Eggeler

Microscopy of Nanoscale Structures & Mechanisms (MNM) Laboratorium für Elektronenmikroskopie (LEM) CFN, Gebäude 30.25, Raum 215 Tel: 608-43724, Email: <u>yolita.eggeler@kit.edu</u> **Sprechstunde ist jeweils Dienstag ab 13:30 Uhr.**

Relevanz als Prüfungsfach

Elektronenmikroskopie I: Transmissionselektronenmikroskopie (2 SWS, 4 LP) und begleitendes Praktikum 4 Versuche (4 LP)

Elektronenmikroskopie II: Rasterelektronenmikroskopie und analytische Verfahren (2 SWS, 4 LP) und begleitendes Praktikum 4 Versuche (4 LP)

Master Physik

Beitrag zu Schwerpunktfach/Ergänzungsfach: kondensierte Materie und Nanophysik bei Anmeldung zur Modulprüfung muss Teilnahmeschein vorgelegt werden (wird vergeben bei maximal 2 Abwesenheiten im Semester), *EMII kann auch als Nebenfach gewählt werden.*

Master Materialwissenschaft und Werkstofftechnik (MatWerk) EM I und EM II (Vorlesung und Praktikum) mündliche Prüfung (16 LP)

Master Angewandte Geowissenschaften Wahlfach EM II (Vorlesung und Praktikum mit einem Protokoll aus 4 Versuchen, 5 LP)

Wahlfach für Master Chemie, Mathematik ... Gab es schon, muss ggf. geklärt werden

Yolita Eggeler

Microscopy of Nanoscale Structures & Mechanisms (MNM), Laboratorium für Elektronenmikroskopie (LEM), Gebäude 30.25, Raum 215; Tel: 608-43724; Email: yolita.eggeler@kit.edu

1. Rasterelektronenmikroskopie

- 1.1 Funktionsprinzip des Rasterelektronenmikroskops
- 1.2 Wechselwirkung zwischen Primärelektronen und Probe
- 1.3 Apparative Aspekte
- 1.4 Abbildungsmodi
 - Abbildung mit Rückstreuelektronen
 - Abbildung mit Sekundärelektronen
 - Channeling (Orientierungskontrast)
 - EBSD: Electron Backscatter Diffraction
- 1.5 Environmental (Niederdruck) Rasterelektronenmikroskopie
- 1.6 Abbildung mit elektronenstrahlinduzierten Strömen (EBIC: electron-beam induced currents)
- 1.7 Kathodolumineszenz
- 1.8 Prüfen elektronischer Bauelemente
- 1.9 Elektronenstrahllithographie

Nutzbare Signale im Rasterelektronenmikroskop:

Adaptiert nach P.J. Goodhew, J. Humphreys, R. Beanland, Electron Microscopy and Analysis, Abb. 5.6

Abbildung mit

- Sekundärelektronen (E_{kin} < 50 eV) (engl. secondary electrons, SE)
- Rückstreuelektronen ($E_{kin} \ge 50 \text{ eV}$) (engl. backscattered electrons, BSE)

Anzahl von Sekundär- und Rückstreuelektronen als Funktion der Elektronenenergie

L. Reimer, Scanning Electron Microscopy, Abb.1.6

Die überwiegende Mehrheit der emittierten Elektronen hat niedrige Energien im Vergleich zur Primärelektronenenergie

Primärelektron SE: Sekundärelektronen SE2: SE, die durch Rückstreuelektronen erzeugt werden SE2 **BSE:** Rückstreuelektronen BSE BSE (backscattered electrons) BSE SE SE Probenoberfläche "Absorbierte" SE Adaptiert nach Goodhews, Humphreys, Beanland, "Electron Microscopy and Analysis", Abb. 5.7a

Trajektorie eines Primärelektrons

- elastische Streuprozesse: Impuls- und Energieerhaltung
- klassische Mechanik: Stoßprozesse zwischen 2 sehr unterschiedlich schweren Stoßpartnern (Elektron und Atom)
 - → Energieübertrag Δ E vom Elektron an Atom \approx 0 eV
 - Jedoch substantieller Energieverlust bei Elektron-Elektron Streuung
- inelastische Streuprozesse: keine Impuls- und Energieerhaltung
 - → Primärelektronen verlieren immer Energie △E > 0 (Energieverlust hängt von der Art des Streuprozesses ab)

- Wechselwirkungsvolumen: Einhüllendes Volumen der Elektronentrajektorien
- Eindringtiefen zwischen 100 nm und mehreren μm abhängig von
 - Dichte, mittlerer Ordnungszahl, Atomgewicht des Probenmaterials
 - Primärelektronenenergie E₀
 typische Eindringtiefe ~ 1µm bei
 bei 10 keV Elektronenenergie

Empirische Gleichungen für R (L. Reimer, Scanning Electron Microscopy, Chapter 3.4.1)

- Hochauflösende REM nur mit Sekundärelektronen, die in der Nähe der Oberfläche nahe dem Primärelektronenstrahl erzeugt werden
- Chemische Analyse durch Analyse der charakteristischen Röntgenstrahlung, die durch Elektronenanregung erzeugt wird

Beschreibung elastischer Streuprozesse:

- Elastisch: Impuls- und Energieerhaltung beim Stoßprozess zwischen Elektron und Atom
- Klassische Beschreibung durch Rutherford (1911): Coulomb Wechselwirkung zwischen positiv geladenem Atomkern und Elektron ohne Berücksichtigung der abschirmenden Wirkung der Elektronenhülle (Teilchenbild)

Differentieller Rutherford Streuquerschnitt auf Basis von Coulomb Wechselwirkung zwischen Elektron (-e) und Kern (+Ze) ohne Berücksichtigung der Abschirmung durch Elektronenhülle

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{e^4 Z^2}{4(4\pi\varepsilon_o)^2 m^2 v^4} \frac{1}{\sin^4 \frac{\theta}{2}}$$

Z: Ordnungszahl des Streuatoms

- v: Elektronengeschwindigkeit
- m: Elektronenmasse
- e: Elementarladung
- ϵ_0 : elektrische Feldkonstante

Differentieller Streuquerschnitt divergiert für $\theta \rightarrow 0!$

Lösung des Streuproblems unter Berücksichtigung der Abschirmung durch Elektronenhülle nur durch quantenmechanische Betrachtung (Lösung der Schrödingergleichung) mit potentieller Energie des Elektrons V_{Atom} im Atompotential

$$V_{Atom} = -\frac{e^2 Z}{4\pi\varepsilon_0 r} \exp\left(-\frac{r}{R}\right) \qquad \text{mit} \qquad R = a_H Z^{-1/3}$$

r: Abstand vom Atomkern
R: charakteristischer Abschirmlänge
a_H: Bohr Radius (a_H= 0.0526 nm) \qquad Abschirmung berücksichtigt durch diese
exponentielle abfallende Funktion an den Term

Elektronenmikroskopie II / Yolita Eggeler

L. Reimer, Scanning Electron Microscopy, Abb.3.5

0

Inelastische Streuprozesse: Energieverlust der Primärelektronen $\Delta E > 0$

- Erzeugung von Gitterschwingungen (Phononen): $\Delta E \approx k_B T$ ca. 25 meV bei 300 K, bei schlechter Wärmeleitfähigkeit der Probe \rightarrow Erwärmung der Probe
- Erzeugung von kollektiven (longitudinalen) Schwingungen der Valenzband/Leitungsbandelektronen (Plasmonen): 5 eV ≤ ∆E ≤ 50 eV Analyse mit <u>Elektronenenergieverlustspektroskopie</u> → Information über Ladungsträgerkonzentration
- Elektron-Elektron Streuung Anregung von Elektronen auf inneren Schalen: $\Delta E > 10 \text{ eV}$ bis 100 keV

-Erzeugung von Röntgenstrahlung:
chemische Analyse durch energiedispersive Röntgenspektroskopie,
-Erzeugung von Auger Elektronen
(Beitrag zu SE und BSE)

Primärelektron

KL2L3

Fig. 2-43.

The emission of an X-ray quantum or Auger electron can be divided into two steps. The atom is initially excited by the removal of an electron from an inner shell (in this case the K shell) and thereby attains a higher energy state. After a very short time (about 10^{-15} s) it returns to its ground state when another electron from an outer shell (L shell) fills the vacancy. The energy released in this transition is used to emit an X-ray quantum or an Auger electron.

E. Fuchs, H. Oppolzer, H. Rehme, Particle Beam Microanalysis, Abb.2.43

11

Ka2

Inelastische Elektron-Elektron Streuung

(L. Reimer, Scanning Electron Microscopy, Kap. 3.2)

Differentieller Streuquerschnitt für Anregung eines gebundenen Elektrons auf einer inneren Schale im Grundzustand ("0") in einen angeregten Zustand m

$$\frac{d\sigma_{inel}}{d\Omega} = \sum_{m \neq 0} \frac{d\sigma_{0m}}{d\Omega} = \frac{4e^4 Z}{\left(4\pi\varepsilon_o\right)^2 m^2 v^2} \frac{1 - \left(\frac{1}{1 + \left(\frac{\theta}{\theta_o}\right)^2}\right)^2}{\left(\theta^2 + \theta_E^2\right)^2} \propto \frac{Z}{E_o} \quad \text{mit} \quad \theta_E = \frac{J}{4E_o} <<1$$

J: mittleres Ionisationspotential (benötigte Energie um eine Elektron von Atom zu entfernen) E₀: Primärelektronenenergie v: Elektronengeschwindigkeit

Semiempirische Gleichung für J:

 $J = 9.76Z + 58.8Z^{-0.19}$ in [eV] oder J = 11.5Z in [eV] für $Z \le 6$

Vergleich mit charakteristischem Winkel θ_0 für elastische Streuung: $\theta_0 >> \theta_E$

sehr stark ausgeprägte Vorwärtsstreucharakteristik bei inelastischen Streuprozessen

Elektron-Elektron Streuung

Langsame Sekundärelektronen:

Überwiegend Anregung aus Valenz- und Leitungsband des Festkörpers

→ kein einfaches Modell für differentiellen Streuquerschnitt

Beschreibung von Mehrfachstreuung:

$$\sigma = \sigma_{el} + \sigma_{inel} = 2\pi \int_{0}^{\pi} \left(\frac{d\sigma_{el}}{d\Omega} + \frac{d\sigma_{inel}}{d\Omega} \right) \sin \theta d\theta$$

 σ : Streuquerschnitt zur Beschreibung der Streuwahrscheinlichkeit, [σ] = cm²

Intensität ungestreuter Elektronen I:

$$dI = -I N\sigma dz \qquad I = I_0 \exp(-N\sigma z) = I_0 \exp(-z/\Lambda) = I_0 \exp(-p)$$

N: Anzahl der Atome pro Volumeneinheit

I₀: Intensität einfallender Elektronen

 Λ : mittlere freie Weglänge der Elektronen zwischen 2 Streuprozessen $\Lambda = \frac{1}{\sigma N}$

p: mittlere Zahl von Streuprozessen

z: zurückgelegter Weg (Abstand zur Probenoberfläche)

Mehrfachstreuung: Probendicke < $25 \cdot \Lambda$ Vielfachstreuung: Probendicke > $25 (\pm 5) \cdot \Lambda \longrightarrow$ Modelle für Elektronendiffusion (L. Reimer, Scanning Electron Microscopy, Kap. 3.3.2)

<u>Mittlerer Energieverlust dE_m des Elektrons pro Wegstrecke dx</u> im Festkörper bei Vielfach-Streuung nach Bethe (quantenmechanische Rechnung, nichtrelativistischer Fall) "continuous-slowing-down approximation" (L. Reimer, Kap. 3.3.4)

$$S = \left| \frac{dE_m}{dx} \right| = 7.8 \cdot 10^{10} \frac{Z}{A} \frac{1}{E_0} \ln \left(b \frac{E_0}{J} \right)$$
 [S]=eV g⁻¹cm²

Z: Ordnungszahl

A: Atomgewicht

E₀: Primärelektronenengie [eV]

J: mittleres Ionisationspotential, semiempirische Gleichung $J = 9.76Z + 58.8Z^{-0.19}$ in [eV] b: abhängig von Rechnung (klassisch b=1, quantenmechanisch b=1.166)

Eindringtiefe/Elektronenreichweite R:

Durch Anpassung an experimentelle Daten $R = a E_0^n$

a, n: abhängig von Elektronenergie und Ordnungszahl des Probenmaterials

E[keV]		1	5	10	20	30	50		_
C Z = 6 $\varrho = 2 g cm^{-3}$ $v \simeq 3$	$\sigma_{\rm el}$ $\Lambda_{\rm el}$ $\Lambda_{\rm t}$ R	0.65 1.5 0.4 0.033	0.11 9 2.3 0.49	0.055 18 4.5 1.55	0.027 37 9 4.9	0.018 55 14 9.7	0.012 83 20 22.6	$ imes 10^{-16} \mathrm{cm}^2$ nm nm μ m	Inelastische Streuung dominant $\nu = \frac{\sigma_{inel}}{\sigma_{el}}$ R: Elektronen-
$\overline{Al \ Z = 13}$ $\varrho = 2.7 \text{ g cm}^{-3}$ $v \simeq 1.5$	$\sigma_{ m el} \ \Lambda_{ m el} \ \Lambda_{ m t} \ R$	1.26 1.3 0.5 0.025	0.31 5 2 0.36	0.16 10 4 1.14	0.08 21 8 3.6	0.053 31 12 7.1	0.034 49 20 16.7	$\times 10^{-16} \text{ cm}^2$ nm nm μ m	
Cu Z = 29 $\varrho = 8.9 \text{ g cm}^{-3}$ $v \simeq 0.6$	$\sigma_{ m el} \ \Lambda_{ m el} \ \Lambda_{ m t} \ R$	1.84 0.64 0.4 0.007	0.64 1.8 1.1 0.11	0.37 3.2 2.0 0.35	0.21 5.6 3.5 1.10	0.15 7.8 4.9 2.26	0.11 10.7 6.7 5.1	$\times 10^{-16} \text{ cm}^2$ nm nm μ m	reichweite $\Lambda_{el} = \frac{1}{1}$
Ag $Z = 47$ $\varrho = 10.5 \text{ g cm}^-$ $v \simeq 0.4$	$ \begin{array}{c} \sigma_{\rm el} \\ \Lambda_{\rm el} \\ \Lambda_{\rm t} \\ R \end{array} $	3.09 0.5 0.4 0.006	1.15 1.5 1.0 0.09	0.71 2.4 1.7 0.29	0.43 4.0 2.8 0.93	0.32 5.3 3.8 1.8	0.22 7.7 5.5 4.3	$ imes 10^{-16} \mathrm{cm}^2$ nm nm μ m	$\Delta_t = \frac{\Lambda_{el} N}{(1+\nu)}$
Au $Z = 79$ $\varrho = 19.3 \mathrm{g cm^{-1}}$ $v \simeq 0.2$	$ \begin{array}{c} \sigma_{\rm el} \\ \Lambda_{\rm el} \\ \Lambda_{\rm t} \\ R \end{array} $	3.93 0.43 0.36 0.003	1.60 1.0 0.9 0.05	1.05 1.6 1.3 0.17	0.67 2.5 2.1 0.51	0.52 3.3 2.7 1.0	0.37 4.6 3.8 2.3	$\times 10^{-16} \text{ cm}^2$ nm nm μ m	Elastische und inelastische Streuung gleichwertig

L. Reimer, Scanning Electron Microscopy, Tab.3.1

Elektronenmikroskopie II / Yolita Eggeler

Berechnung von Elektronentrajektorien durch Monte-Carlo Simulationen

Streuquerschnitte (elastisch: screened Rutherford, Mott) Energieverlust pro Wegstrecke (z.B. continuous-slowing-down approximation) Länge der geraden Segmente bestimmt durch Zufallsvariable mit Skala, die durch Λ bestimmt ist

Simulationsprogramm: NISTMonte https://cstl.nist.gov/div837/837.02/epq/index.html

Fig. 3.28. Sequence of scattering processes in a Monte Carlo calculation with $s_i =$ free path lengths, x_i , y_i , $z_i =$ coordinates of electron at the *i*th collision, θ_i and $\chi_i =$ scattering and azimuth angles after the *i*th collision

L. Reimer, Scanning Electron Microscopy, Abb.3.28

Wechselwirkungsvolumina: Trajektorien von Primärelektronen

Elektronenmikroskopie II / Yolita Eggeler

Magnetische Elektronenlinsen

Lorentzkraft

$$\vec{F} = -e\left(\vec{\mathbf{v}} \times \vec{B}\right)$$

 \vec{v} : Elektronengeschwindigkeit \vec{B} : Magnetfeld

- Einfache Elektronenlinsen in Rasterelektronmikroskopen bestehen oft nur aus einer Spule
- Bewegung der Elektronen auf Spiralbahnen
- Variation der Magnetfeldstärke und Brennweite durch Änderung des Linsen(spulen)stroms
- Magnetfeld hat fokussierende Wirkung
- Elektronenlinsen haben schlechte optische Eigenschaften: starker Öffnungsfehler und starker Farbfehler sowie zahlreiche Abbildungsfehler höherer Ordnung

Abbildungsfehler

d_s: Fehlerscheibchen mit dem kleinsten Durchmesser (disk of least confusion)

Fig. 2.9 a–d. Lens aberration of an electron lens: (a) spherical and (b) chromatic aberration, (c) axial astigmatism and (d) diffraction error disc

L. Reimer, Scanning Electron Microscopy, Abb.2.29

1.3 Apparative Aspekte

P.J. Goodhew, J. Humphreys, R. Beanland, " Electron Microscopy and Analysis", Abb.5.11 Ziel: verkleinerte Abbildung der Elektronenquelle auf die Probenoberfläche

Geometrische Optik

$$d_1 = d_0 \cdot \frac{\mathbf{v}_1}{u_1}$$
$$d_2 = d_1 \cdot \frac{\mathbf{v}_2}{u_1}$$

v₂: Arbeitsabstandd₀: Durchmesser der Quelle

 $v_1 + u_2 = konst$

Strahldurchmesser wird durch Nutzer festgelegt durch

 u_2

- a) Anregung (Brennweite) der Kondensorlinse "spot size"
- b) Arbeitsabstand

(v₂ = WD "working distance")

Strahldurchmesser auf der Probe d_p

$$d_p = \sqrt{d_2^2 + d_s^2 + d_c^2 + d_b^2}$$

d₂: Geometrischer Strahldurchmesser auf der Probenoberfläche durch Verkleinerung der Quelle

- d_s: Durchmesser des Öffnungsfehlerscheibchens ("disk of least confusion")
- d_b: Durchmesser des Beugungsfehlerscheibchens
- d_c: Durchmesser des Farbfehlerscheibchens

$$d_p = \sqrt{C_o^2 \frac{1}{\alpha_p^2} + \frac{1}{4} C_s^2 \alpha_p^6 + \left(C_c \frac{\Delta E}{E_0}\right)^2 \alpha_p^2 + \frac{[0.6\lambda]^2}{\alpha_p^2}} \qquad \qquad \sin \alpha_p = \frac{r}{WD} \approx \alpha_p$$

 α_p : Öffnungswinkel des Strahlenbündels durch Objektivblendenradius r (bis zu 100 μ m) und Arbeitsabstand WD (einige mm) gegeben

- C_s: Öffnungsfehlerkonstante der Objektivlinse
- C_c: Farbfehlerkonstante der Objektivlinse
- E₀: Primärelektronenenergie
- ΔE: Halbwertsbreite der Energieverteilung der Primärelektronen

1.3 Apparative Aspekte

Zusammenhang zwischen geometrischem Stahldurchmesser d₂, Strahlstrom I_p und α_p :

$$I_{p} = \frac{\pi}{4}d_{2}^{2}j_{p} = \frac{\pi^{2}}{4}\beta d_{2}^{2}\alpha_{p}^{2}$$

$$\beta = \frac{j_{p}}{\pi\alpha_{p}^{2}} = konst$$

$$d_{2} = \left(\frac{4I_{p}}{\pi^{2}\beta}\right)^{\frac{1}{2}}\frac{1}{\alpha_{p}} = C_{o}\frac{1}{\alpha_{p}}$$

 β : Richtstrahlwert = Konstant (Charakteristikum der Elektronenquelle)

j_p: Strahlstromdichte

Wichtige Faktoren für minimal erreichbaren Strahldurchmesser: Linsenqualität C_s, C_c (wenige 1 mm für gute REM Linsen) Eigenschaften des Elektronenemitters ($\Delta E,\beta$)

Elektronenmikroskopie II / Yolita Eggeler

- Beschreibung der Winkelabhängigkeit elastischer und inelastischer Streuprozesse durch differentielle Streuquerschnitte
- Elastischer Rutherford Streuquerschnitt mit Berücksichtigung der Abschirmung durch die Elektronenhülle (screened Rutherford Streuquerschnitt)
- Streuung hochenergetischer Elektronen stark vorwärtsgerichtet; starker Abfall der Streuwahrscheinlichkeit mit zunehmendem Streuwinkel
- Modellierung von Elektronentrajektorien durch Monte Carlo Simulationen
- Elektronenlinsen bestehen aus geeignet dimensionierten magnetischen (oder in geringerem Maße elektrischen) Feldern
- Eigenschaften von Elektronenlinsen stark durch Abbildungsfehler beeinträchtigt (Öffnungsfehler, Farbfehler, Beugungsfehler)
- Die Elektronenoptik im Rasterelektronenmikroskop dient zur Abbildung (Verkleinerung der Größe!) der Elektronenquelle auf die Probenoberfläche
- Berechnung des Strahldurchmessers unter Berücksichtigung von Abbildungsfehlern, Beugung und Richtstrahlwert