

## 1. Fermi surface of Iron-pnictide superconductors

Iron-pnictide superconductors such as KFe<sub>2</sub>As<sub>2</sub> are layered half-metals with weakly overlapping valence and conduction bands, and this results in a special kind of Fermi surface. As a simplest model we consider a 3-dimensional simple cubic lattice with lattice constant a and hopping integrals - aka matrix elements of the Hamiltonian - between nearest neighbors only. To describe the layered nature of the compounds we assume that the hopping integral  $-t_1$  between nearest neighbors in x- or y-direction is different from the hopping integral  $-t_2$  between nearest neighbors in z-direction and  $t_1 \gg t_2$  whereby  $t_1, t_2 > 0$ .

a) Consider a single (x-y) plane (i.e.  $t_2=0$ ) and find the dispersion relation  $E_{\bf k}$  where  ${\bf k}=(k_x,k_y)$  is a two-dimensional wave vector. Show that for small  $|{\bf k}|\ll \frac{\pi}{a}$  this can be approximated by

$$E_{\mathbf{k}} = E_0 + \frac{k^2}{2m^*} \tag{1}$$

and express the effective mass  $m^*$  and the shift  $E_0$  in terms of  $t_1$  and a.

- b) Assume that the band is almost empty i.e. the Fermi energy is  $E_F = E_0 + \epsilon$  with  $\epsilon \ll t_1$  so that (1) can be used for **k** on the Fermi surface. Find the Fermi momentum  $k_{F,0}$ .
- c) Consider now the case  $t_2 \neq 0$ . Show that for 3-dimensional momenta with  $k_x^2 + k_y^2 \ll \frac{\pi}{a}$ ,  $k_z$  arbitrary, the dispersion relation can be written as

$$E_{\mathbf{k}} = E_0 + \frac{k^2}{2m^*} - 2t_2 \cos(k_z \ a).$$

Then discuss the form of the Fermi surface for the case  $E_F = E_0 + \epsilon$  with  $t_2 \ll \epsilon \ll t_1$  (Hint: let  $\mathbf{k}_F = (k_{F,x}, k_{F,y}, k_{F,z})$  be a wave vector on the Fermi surface and find the relationship between  $k_{F,\parallel} = (k_{F,x}^2 + k_{F,y}^2)^{1/2}$  and  $k_{F,z}$ ). Sketch the resulting Fermi surface.

d) What changes if the band is almost full rather than almost empty?



## 2. Calculation of the Thermal Conductivity using Boltzmann Equation

To estimate the thermal conductivity, we place ourselves in the case where only a thermal gradient is applied to the sample and no electrical or magnetic fields. We seek to calculate the resulting heat current defined as:

$$J_H = \int \frac{d\vec{k}}{4\pi^3} \left[ E_n(\vec{k}) - \mu \right] \vec{v}_n(\vec{k}) f(\vec{r}, \vec{k}, t)$$

where  $E_n$  is the energy of band n that crosses the Fermi-level (we'll assume this is the only one),  $\mu$  the chemical potential,  $\vec{v}_n(\vec{k}) = \frac{1}{\hbar} \nabla_k E_n$  the electron velocity in band n, and  $f(\vec{k})$  the electron distribution function that we need to determine.

We first linearize the Boltzmann equation

$$\left. \frac{\partial f(\vec{r}, \vec{k}, t)}{\partial t} \right|_{\text{Scattering}} = \frac{\partial f(\vec{r}, \vec{k}, t)}{\partial t} + \vec{v}_n(\vec{k}) \cdot \frac{\partial f}{\partial \vec{r}} + \frac{\vec{F}}{\hbar} \cdot \frac{\partial f}{\partial \vec{k}}$$

and place ourselves in the relaxation time approximation, that is we assume that:  $f(\vec{r}, \vec{k}, t) = f_0(E_n) + g(\vec{r}, \vec{k}, t)$ , with  $f_0 \ll g$  ( $f_0$  is the Fermi-Dirac distribution) and that

$$\left. \frac{\partial f(\vec{r}, \vec{k}, t)}{\partial t} \right|_{\text{Scattering}} = -\frac{g(\vec{k})}{\tau(\vec{k})}$$

- a) We search for stationary solutions. Rewrite the Boltzmann equation (remember, no external fields are applied).
- b) To evaluate this, we'll assume that at each point  $\vec{r}$  of the sample local thermal equilibrium is achieved so that we can write:  $\frac{\partial f}{\partial \vec{r}} \sim \frac{\partial f_0}{\partial \vec{r}}$ . Show that  $\frac{\partial f_0}{\partial T} = -\frac{\partial f_0}{\partial E_n} \left( \frac{E_n(\vec{k}) \mu}{T} \right)$  and  $\frac{\partial f_0}{\partial \mu} = -\frac{\partial f_0}{\partial E_n}$ , and that one can then write

$$g(\vec{k}) = \tau(\vec{k})\vec{v}_n(\vec{k})\frac{\partial f_0}{\partial E_n} \left\{ \frac{\partial \mu}{\partial T} + \frac{E_n(\vec{k}) - \mu}{T} \right\} \nabla T$$

c) Using the Sommerfeld expansion, one can show that  $\mu(T) = E_F \left(1 - \frac{\pi^2}{12} \left(\frac{T}{T_F}\right)^2\right)$ . Why can then the term  $\frac{\partial \mu}{\partial T}$  be neglected in the previous expression in normal conditions to measure the thermal conductivity of a metal? Show that this yields:

$$\kappa = \int \frac{d\vec{k}}{4\pi^3} \frac{[E_n(\vec{k}) - \mu]^2}{T} \vec{v}_n^2(\vec{k}) \tau(\vec{k}) \frac{\partial f_0}{\partial E_n}$$



d) For the calculation of the electrical conductivity, we saw in class a useful way to perform such integral using constant energy surfaces. Use the same trick to show that  $\kappa$  can simply be rewritten as:

$$\kappa = \frac{1}{Te^2} \int dE_n \left( \frac{\partial f_0}{\partial E_n} \right) \sigma(E_n) [E_n - \mu]^2$$

- e) Use the Sommerfeld expansion  $\int dE \left(-\frac{\partial f_0}{\partial E}\right) G(E) \sim G(E_F) + \frac{\pi^2}{6} (k_B T)^2 \frac{\partial^2 G}{\partial E^2}\Big|_{E=E_F}$  to explicit  $\kappa$  and retrieve Wiedemann-Franz law. Estimate the Lorentz number.
- f) Based on this, we can estimate the Seebeck S thermoelectric coefficient that quantifies the electrical current induced by a thermal gradient. It can be defined as follows:  $\mathbf{J}_{\mathbf{q}} = \sigma \mathbf{E} S \sigma \nabla T$ . Show that S can be written as

$$S = \frac{\pi^2 k_B^2 T}{3q} \frac{\partial \ln \sigma}{\partial E_n} \bigg|_{E=E_F}.$$

g) It can be useful to introduce generalized transport coefficients that relates electrical and heat transport:

$$J_q = L_{11}\mathbf{E} + L_{12}\left(\frac{-\nabla T}{T}\right)$$

$$J_H = L_{21}\mathbf{E} + L_{22}\left(\frac{-\nabla T}{T}\right)$$

Express the  $L_{xx}$  coefficients as function of  $S,\sigma$  and T.

## 3. Hall-Effect

In order to find the Hall coefficient in the context of the Boltzmann equation, one may proceed in the following way:

Begin with the Boltzmann equation and reduce it first. Now guess a solution of the form  $g = ak_x + bk_y$ . Assume  $\vec{B} = (0, 0, B)$  and  $\vec{E} = (E_x, E_y, 0)$ .

- a) Determine a and b.
- b) Compute currents along x and y and find the total conductivity tensor. Express the resistivity sensor in terms of the Hall coefficient R.
- c) How does the result changes in the case of  $\vec{E}$  assumed to be parallel to  $\vec{B}$ ?



## 4. Tight-Binding Band

Consider a two-dimensional metal with a square lattice of lattice spacing a. The conduction band is described by the tight-binding approximation,

$$E = E_0 + E_1 \left( 2 - \cos k_x a - \cos k_y a \right)$$

and the relaxation time  $\tau$  is independent of the electron momentum or energy. The band is half-filled and the resulting Fermi line is shown in Figure 1.

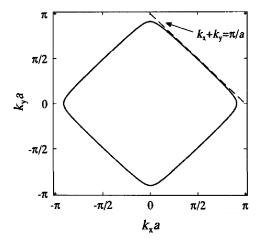


Figure 1: Fermi line for a two-dimensional tight-binding model with nearly half-filled band

- a) Using the solution of the Boltzmann equation, calculate the conductivity tensor. (Hint: Use  $\vec{v_n}(\vec{k}) = \frac{1}{\hbar} \frac{\partial E(\vec{k})}{\partial \vec{k}}$  an integral only depending in the velocity.)
- b) Compare the result of a) to the conductivity from the Drude model. Use the same electron density and relaxation time. What is the relevant effective mass?