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1. Hermitean 2 × 2 Matrix 

We often encounter the problem of finding the eigenvalues and eigenvectors of a Hermitean 2 
× 2 matrix. Show that the eigenvalues of the matrix: 

𝐻 = # 𝜖 Δ
Δ∗ −𝜖'	

are ±W with 𝑊 = )𝜖" + |Δ|"  and determine the normalized eigenvectors #𝑢𝑣'  for each 

eigenvalue (‘normalized’ means |u|2 + |v|2 = 1). Show that |𝑢|" − |𝑣|" = ± #
$

 and 𝑢𝑣∗ = %
"$

.  
Use the above to find the eigenvalues and eigenvectors of the more general matrix: 

𝐻 = /𝜖& Δ
Δ∗ 𝜖"

0	

	
2. Lattice Vectors and Brillouin Zone of the Honeycomb Lattice 

For any crystal, the unit cell is defined as the smallest unit which produces the entire crystal 
when it is translated by all possible lattice vectors. For a two-dimensional lattice, the lattice 
vectors can be written as 𝐑	 = 	𝑚 · 𝑹𝟏 + 𝑛 · 𝑹𝟐 with integer m,n and the two basis vectors R1 

and R2 (that means the two ‘shortest’ vectors which span the whole set of lattice vectors).  
a) Find the unit cell and basis vectors of the honeycomb lattice: 

	

The lattice is in the x − y plane and consists of regular hexagons with an edge of a, one edge is 
parallel to the x-axis. Hint: First convince yourself that the vector indicated in the Figure is not 
a basis vector. 
b) For a three-dimensional lattice the three reciprocal basis vectors Ki are defined by:  

𝐾& =
2𝜋
𝑉)
𝑹𝟐 × 𝑹𝟑 

and two additional equations obtained by cyclic permutation of the indices 1,2,3. Thereby Vc = 
R1 · (R2 × R3) is the volume of the unit cell. 
Show that Ki · Rj = 2π δij,. 

For the two-dimensional honeycomb lattice we add the unit vector in z-direction, ez, as a 
‘nominal’ third basis vector R3. Find the reciprocal basis vectors K1, K2 and K3. Show that 
whereas K3 points in z-direction, K1, K2 are in the x − y plane. Sketch the reciprocal lattice 
which is formed by the vectors 𝑲𝒎,𝒏 	= 	𝑚 · 𝑲𝟏 + 𝑛 · 𝑲𝟐	with integer m and n. 

a	
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c) Determine the first Brillouin zone defined as the set of all k in the x − y plane which obey 

𝒌 ∙ 𝑲/,0 ≤
1
2 A𝑲/,0A

" 

for all Km,n with 𝑚" + 𝑛" ≠ 0 (in other words: the set of all k closer from the (0, 0) = K0,0 point 
than from any other Km,n. Show that the Brillouin zone has the form of a hexagon and find the 
coordinates of its corners. How would the results change if instead of ez we had used the vector 
λez with some real λ as the ‘nominal’ third basis vector? 

3. Bloch theorem 

The translation operator 𝑇𝑹 is defined by its action on any function of the position:  
𝑇𝑹E𝜙(𝒓)J = 𝜙(𝒓 + 𝑹) 

 
a) In one dimension choose 𝜙(𝑟) = 𝑟"  and sketch 𝑇𝑹E𝜙(𝑟)J. Give a geometrical 

interpretation of TR. 
b) Show that 𝑇𝑹𝟏𝑇𝑹𝟐 = 𝑇𝑹𝟏2𝑹𝟐 and deduce that L𝑇𝑹𝟏 , 𝑇𝑹𝟐N = 0 for any 𝑹𝟏 and 𝑹𝟐. Show 

that 𝑇0.𝑹 = (𝑇𝑹)0. 
c) Show that 𝑇𝑹 commutes with the kinetic energy operator 𝑇 = 4ℏ

"/
∆	(Hint: show that the 

commutator P𝑇𝑹,
6
67#
Q with i ∈ {1, 2, 3} gives zero when acting on any function 𝜙(𝒓)).   

d) Consider the Hamiltonian ℋ = 𝑇 + 𝑉(𝒓) and show that ℋ commutes with 𝑇𝑹 if the 
potential obeys 𝑉(𝒓) = 𝑉(𝒓 + 𝑹). Give a geometrical interpretation. 

e) Show that if ℋcommutes with 𝑇𝑹, for any normalized eigenstate 𝜙(𝑟) of ℋ (so ℋ𝜙 =
𝐸𝜙 and ∫|𝜙(𝑟)|"𝑑𝑟 = 1), then 𝑇𝑹𝜙(𝑟) is also a normalized eigenstate of ℋ. 
 

f) now consider a potential that is periodic on a crystal lattice defined by 𝑹𝒖𝒗𝒘 = 𝑢𝑹𝟏 +
𝑣𝑹𝟐 +𝑤𝑹𝟑 (where u, v and w are integers).  It can be shown that any nondegenerate 
eigenstates of the system 𝜙(𝑟) obeys 𝑇𝑹𝒊E𝜙(𝒓)J = 𝑒𝑥𝑝(𝑖𝛼;)𝜙(𝒓). Define a reciprocal 
lattice vector 𝒌 = ∑ <#

"=
𝑲;

>
;?&  (where the 𝑲; are reciprocal lattice basis vectors - see 

problem 2). Express the phase factor 𝛼@AB resulting from the application of  𝑇𝑹𝒖𝒗𝒘 	on 
𝜙(𝒓) for an arbitrary vector 𝑹𝒖𝒗𝒘 as function of 𝒌. Show that for any reciprocal lattice 
vector 𝑲CDE , 𝒌 and 𝒌 + 𝑲CDE yield the same phase factor. 

 

4. (Optional) Periodic Boundary Conditions 

We consider an infinite chain of points with coordinates Rn = (na,0,0), n integer, and the 
following functions defined on the set of these points: fk(n) = eikna. Thereby k is a ‘quantum 
number’ of the function. 
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a) We now imposte that fk(n) is periodic with period N: fk(n + N) = fk(n) for any n. Find the 
values of k such that this condition is obeyed - from now we call these the ‘allowed’ k (Hint: 
there are infinitely many of them...). 
b) Show that if k is allowed, 𝑘F = 𝑘 + "E=

G
 (with l integer) is allowed as well and that fk′(n) 

= fk(n) for any n - which means that either k or k′ is redundant. 
c) From now we assume that N is even. Find a ‘minimum set’ of nonredundant k, that 
means find a set of allowed k such that 

i) no two k in the minimal set differ by 2alπ with an integer l ≠0 
ii) any allowed k′ not included in the minimal set can be written as 𝑘F = 𝑘 + "E=

G
  

with some k in the minimal set 
iii) The sum ∑ |𝑘| taken over all k in the minimal set takes is as small as possible. 

What is the number of k in the set? 
d) Show that for any two allowed k and k′ 

1
𝑁`𝑓D∗(𝑛)𝑓DF(𝑛) = 𝛿D,DF

H

0?&

 

(Hint: the expression on the left hand side is a geometric sum) 
e) Now suppose we had demanded that f obeys the condition fk(n + N) = eiΘ fk(n) for any n with 

Θ ∈ [0,2π] - how would the results have changed? 
f) Now we generalize the above to a three dimensional lattice. Consider a lattice of points 

withcoordinates Rl,m,n = lR1 +mR2 +nR3, where Ri are the three lattice vectors (see Problem 
2). Our functions now are fk(l,m,n) = eik·Rl,m,n and we demand that the fk are ‘periodic in three 
directions’ fk(l +M,m,n) = fk(l,m+M,n) = fk(l,m,n+M) = fk(l,m,n), with some integer M. Find 
the allowed k (hint: check out the definition of a reciprocal lattice vector in problem 2) and 
find again a ‘minimal set’ of allowed k. What is the number of k in the minimal set?	


