

## 5. Repetition

- What is wrong with the Drude Model?
- What is typically E<sub>F</sub>? What temperature does that relate to? How fast are electrons at the Fermi energy?
- What is the meaning of the real and imaginary part of the electrical conductivity as a function of frequency?
- What relationship can you find between the electrical and thermal conductivity of a metal?
- State Bloch's theorem in your own words.

## 6. Fermi surface of Iron-pnictide superconductors

Iron-pnictide superconductors such as KFe<sub>2</sub>As<sub>2</sub> are layered half-metals with weakly overlapping valence and conduction bands, and this results in a special kind of Fermi surface. As a simplest model we consider a 3-dimensional simple cubic lattice with lattice constant a and hopping integrals (=matrix elements of the Hamiltonian) between nearest neighbors only. To describe the layered nature of the compounds we assume that the hopping integral between nearest neighbors in x- or y-direction ( $-t_1$ ) is different from the hopping integral between nearest neighbors in z-direction ( $-t_2$ ) and  $t_1 \gg t_2$  whereby  $t_1$ ,  $t_2 > 0$ .

- a) Consider a single (x y) plane (i.e.  $t_2 = 0$ ) and find the dispersion relation  $E(\mathbf{k})$  where  $\mathbf{k} = (k_x, k_y)$  is a two-dimensional wave vector. Show that for small  $|\mathbf{k}| \ll \frac{\pi}{a}$  this can be approximated by  $E(\mathbf{k}) \sim E_0 + \frac{k^2}{2m^*}$  (1) and express the effective mass  $m^*$  and the shift  $E_0$  in terms of  $t_1$  and a.
- b) Assume that the band is almost empty i.e. the Fermi energy is  $E_F \sim E_0 + \varepsilon$  with  $\varepsilon \ll t_1$  so that equation (1) above can be used for **k** on the Fermi surface. Find the Fermi momentum  $k_F$ .
- c) Consider now the case  $t_2 \neq 0$ . Show that for a 3D momenta  $\mathbf{k} = (k_x, k_y, k_z)$  with  $k_x^2 + k_y^2 \ll \frac{\pi}{a}$ ,  $\forall k_z$ , the dispersion relation can be written as

$$E(\mathbf{k}) \sim E_0 + \frac{k^2}{2m^*} - 2t_2 cos(k_z a)$$

Then discuss the shape of the Fermi surface for the case  $E_F \sim E_0 + \varepsilon$  with  $t_2 \ll \varepsilon \ll t_1$  (Hint: let  $\mathbf{k}_F = (k_{F,x}, k_{F,y}, k_{F,z})$  be a wave vector on the Fermi surface and find the relationship between  $k_{F\parallel} = (k_{F,x}^2 + k_{F,y}^2)^{1/2}$  and  $k_{F,z}$ ). Sketch the resulting Fermi surface.

d) What changes if the band is almost full rather than almost empty?



## 7. Charge Screening and Thomas Fermi Approximation

a) Use the set of equations we established in the lecture in order to derive the general expression for the dielectric function

$$\epsilon(\boldsymbol{q}) = 1 - \frac{1}{\epsilon_0 q^2} \chi(\boldsymbol{q}) = 1 - \frac{1}{\epsilon_0 q^2} \frac{\rho^{ind}(\boldsymbol{q})}{\phi^{tot}(\boldsymbol{q})}$$

- b) What are the assumptions made for the Thomas Fermi approximation?
- c) Using these assumptions, one can write  $\rho^{ind}(r) = -e\{n_0(r) n_0\}$ , where  $n_0$  is the homogeneous charge carrier concentration of the unperturbed system. Moreover,  $n_0(r) = n_0(\mu + e\phi^{tot}\{r\})$ , leading to

$$\rho^{ind}(r) = -e\{n_0(\mu + e\phi^{tot}\{r\}) - n_0(\mu)\}$$

Show that

$$\epsilon(\boldsymbol{q}) = 1 + \frac{k_s^2}{q^2}$$
 with  $k_s = \sqrt{\frac{e^2}{\varepsilon_0} \frac{D(E_F)}{V}}$ 

What happens for  $q \rightarrow 0$ ?

[Hints: you can assume  $e\varphi^{tot} \ll \mu$  and use  $\frac{D(E_F)}{V} = (\partial n_0/\,\partial\mu)_{\mu=E_F}]$ 

d) How large is the screening length  $\lambda = 1/k_s$  roughly for copper? How much for silicon? Compare them to the interatomic spacing.