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detect the dipole moment of a sample by mechanically vibrating the

sample inside of an inductive pickup coil or inside of a SQUID coil.
TTY~———

Induced current or changing flux in the coil is measured.

The vibration is typically created by a motor or a piezoelectric actuator.
—————
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lar plane parallel to the applied field, as in our measurements. These are
simulated in EASYSPIN®' using the Hamiltonian H = gugBS + > _IAS
(see Methods for details), the two terms of which respectively represent
the Zeeman energy for the electrons within the external field B (ug,
Bohr magneton) and the sum of the various hyperfine interactions'”.
Copper(11) comp]exes have been studied extensively”: for CuPc the
electronic spin is $ = 1/2 and for both naturally occurring copper iso-
topes (“*Cuand ®°Cu) the nuclear spin is I = 3/2. The hyperfine coupling
of ®Cu is defined by the diagonal matrix A With'A . = A,, = —83 MHz
and A,. = —648 MHz in the molecular frame'® (these values scale for
*Cu according to the ratio between gyromagnetic ratios). The predom-
inant (>>99%) naturally occurring nitrogen isotope (**N) has I = 1 and
the four nearest-neighbour nitrogens have a hyperfine couplmg to
the &° Cu** of Ay, =57MHz and A =45 MHz (ref. 23). The
red arrows in Fig. ld indicate the Mns, which, as indi-
cated in the first magnified view, cluster into four groups (owing to
the interaction with the spin-3/2 copper nuclei) of nine transitions
(owing to the four identical spin-1 nitrogen nuclei). The second mag-
nified view shows the expected intensity variation of the transitions
(1:4:10:16:19:16:10:4:1).
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Superconducting Quantum Interference Device (SQUID)

- ADC SQUID consists of a superconducting Ioo? with two - If a magnetic sample is passed through the ring,
Josephson Junctions the persistent current induced is proportional to the
magnetization of the sample.
- aJosephson junction consists of two superconductors
separated by an insulating material. - The loop is therefore able to act like a very

sensitive qu: rometer.

- Itis a weak link, that has a lower critical current IC than the
rest of the junction

4
- ‘ Flu;in the superconducting loop is quantized (&, = h/2e)
—_~

//Jose;hson Junction

'l/ Insulator J’

Superconducting Quantum Interference Device (SQUID

- If external qung increases, a screening current_1§_is generated in the
loop. This adds on one side and subtracts on the other.

SQUID

- the external flux is further increased until it exceeds (DO/Z Starting
from here the loop prefers to increase by one charge quantum in the
opposite direction

- Assoon as the current in either branch exceeds I of the Josephson v

junction, a voltage appears across the junction Is/2

D, =(n+1/2)D,

AV é.‘? /D,
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3 —

s the self inductance of the
superconducting ring

. ®is a shunt resistance
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* dominant constituent of cosmic rays arriving at sea-level. / B suon
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Method
M@Qs involved (unlike neutron scattering and X-RAY)
Muon Creation
Collision of a high energy proton beam with a
suitable target which produces pions that decay very quickly
Q@§) into muons . .

et - ‘+ Vpy e —— Neutrino: spin — antiparallel to momentum
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~— ~—  Muon: spin — parallel to momentum
Pion: no spin _—
NMyrbire = Cores T

Positive spin-polarized muon: small, positively charged

particle is attracted by areas of large electron density and stops in interstitial sites in inorganic materials or bonds
— —_——

directly on to_organic molecules
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Muon interaction in the sample

Muons are implanted into a sample of interest and reside there

for the rest of their short lives ¢~

- Loose initial energy [~4 MeV){ very quickly

- Scattering does not affect the muon spin

- Muon is not implanted in the region that suffers radiation
damage

- Positron decay is detected
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Fig. 3.22 The angular distribution of emitted

positrons with respect to the initial muon-

" ; B e . . y . ‘ spin direction. The expected distribution for

- Positron direction is dominated in one direction due to parity the most energetically emitted positrons is

violation of the weak nuclear interaction shown.



s 1 i % . 5 . s s spin direction. The expected distribution for
- Positron direction is dominated in one direction due to parity the most energetically emitted positrons is

violation of the weak nuclear interaction shown.
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Muons stop uniformly across the sample

-> Volume fraction

Useful for:

- magnetic order is random or of very short range.
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Amplitude(a)= Magnetic volume fraction
Frequency Local field, size of magnetic moments
Damping A, o = inhomogeneity of magnetic regions

Further methods

X-Ray methods
XMCD
(X-Ray Magnetic circulator dichroism)

Optical Methods % 7L.c

Magneto-optic Kerr effect

Changes in polarization and reflected intensity to
light reflected from a magnetized surface

Electronic Methods
Lorentz microscopy /

Transport Methods
Hall Probes @/

Magnetoresistance measurements

N/



NV centers and NV magnetometry

Nitrogen vacancy (NV) center in diamond

—

* substitutional nitrogen and a nearest neighbor
lattice vacancy

* pointdefect, Cavtymmetry
>
- S = 1/(when negatively charged)
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NV centers and NV magnetometry
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