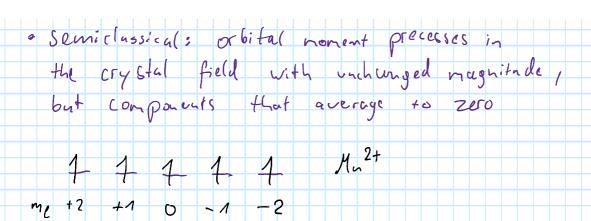


ion	shell	S	L	J	term	p_1	$p_{\rm exp}$	p_2
Ti ³⁺ , V ⁴⁺	3d¹	1/2	2	3 2	$^{2}D_{3/2}$	1.55	1.70	1.73
V^{3+}	$3d^2$	1	3	2	$^{3}F_{2}$	1.63	2.61	2.83
Cr^{3+}, V^{2+}	$3d^3$	3	3	$\frac{3}{2}$	$^{4}F_{3/2}$	0.77	3.85	3.87
Mn ³⁺ , Cr ²⁺	$3d^4$	2	2_	0	$^{5}D_{0}$	0	4.82	4.90
Fe ³⁺ (Mn ²⁺)	$3d^5$	<u>5</u>	0	<u>5</u>	$^{6}S_{5/2}$	5.92	5.82	5.92
Fe ²⁺	$3d^6$	2	2	4	$^{5}D_{4}$	6.70	5.36	4.90
Co ²⁺	$3d^7$	3 2	3	9	$^{4}F_{9/2}$	6.63	4.90	3.87
Ni ²⁺	$3d^8$	1	3	4	$^{3}F_{4}$	5.59	3.12	2.83
Cu ²⁺	$3d^9$	$\frac{1}{2}$	2	5	$^{2}D_{5/2}$	3.55	1.83	1.73
Zn^{2+}	$3d^{10}$	0	0	0	$^{1}S_{0}$	0	0	0

5.2 Orbital Quenching


· For the 3d elements the prediction of 1/2
the total magnetic moment of [] [] (] +1)]

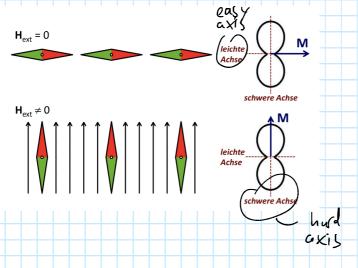
=> crystal field > spin-orbit [3rd Hand's rule)

- instead, often L=0, J=S=> repg=2pg) S(Ste)

Co Osbital moment is quenched

· Semiclassical: orbital noment precesses in

L=0


of len the orbital angular manuman is

not completely quenched -> spin orbit interaction

is not completely neglegible

5.3. Magnetic ALisokopy

· In general: Different spatial directions do not here the same magnetic properties

- · ceseful: data storage
- · Thece main reason for magnetic anisotropy

Magnetocrystalline Anisotropy

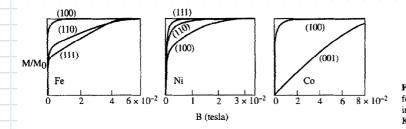
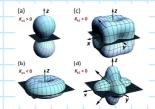



Fig. 6.22 Magnetization in Fe, Co and Ni for applied fields in different directions showing anisotropy. After Honda and Kaya 1926, Kaya 1928.

