

EEFK1 – Lecture 2

Matthieu Le Tacon

Transport Coefficients

	$\mathbf{B}=0$,	$\mathbf{M} = 0$	
	$\widehat{\pmb{E}} = -\nabla \phi_{el}$	$-\nabla T$	
J_q	Electrical Conductivity $(\overrightarrow{\sigma})$ or resistivity $(\overrightarrow{\rho})$	Seebeck-Effect (S)	
J_{H}	Peltier-Effect (P)	Heat Conductivity $(\stackrel{\leftrightarrow}{\kappa})$	
	$\mathbf{B} \neq 0$		
	$-\mathbf{ abla}\phi_{el}\mathbf{ imes}\widehat{\mathbf{B}}$	$-\nabla T \times \widehat{\mathbf{B}}$	
$J_{\mathbf{q}}$	Magnetoresistance $\rho_{xx}(B)$ Hall Effect (R_H)	Nernst Effect (N)	
J _н	Ettinghausen-Effect	Thermal Hall Effect	

Prof. Matthieu Le Tacon – EEFK1

Electrical Transport

Electrical Transport

Karlsruhe Institute of Technology

Contacts for resistivity and Hall measurements on a high-temperature superconductor single crystal

G. Grissonnanche, PhD Thesis (U. Sherbrooke)

Contacts for angle-resolved resistivity measurements on 2D electron-system SrTiO₃/LaAlO₃

Wolff et al. Phys. Rev. B 95, 245132 (2017)

Electrical Transport

Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn₅ F. Ronning et al. *Nature* **548**, 313–317 (2017)

Prof. Matthieu Le Tacon - EEFK1

Practical use of Hall effect

Compass

Quantum Hall Effect (v. Klitzing 1980)

VOLUME 45, NUMBER 6

PHYSICAL REVIEW LETTERS

11 August 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and Hochfeld-Magnetlabor des Max-Planck-Instituts für Festhörperforschung, F-38042 Grenoble, France

G. Dorda Forschungslabowatorien der Stemens AG, D-8000 München, Federal Republic of Germany

M. Pepper Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom (Received 30 May 1980)

Nobel Prize contacts

$$\sigma = rac{I_{
m channel}}{V_{
m Hall}} =
u rac{e^2}{h}$$

www.fkf.mpg.de

New definition of units in Physics

Outreach project by Julien Bobroff

http://hebergement.u-psud.fr/supraconductivite/projet/unitas_mode_demploi/?lang=en

Prof. Matthieu Le Tacon – EEFK1

Thermal Transport
$$\begin{pmatrix} j_{Q,x} \\ 0 \end{pmatrix} = - \begin{pmatrix} \kappa_{xx} & \kappa_{xy}(H) \\ -\kappa_{yx}(H) & \kappa_{yy} \end{pmatrix} \begin{pmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \end{pmatrix}$$

G. Grissonnanche, PhD Thesis (U. Sherbrooke)

Thermal Transport

G. Grissonnanche, PhD Thesis (U. Sherbrooke)

Application: Thermometry

Cernox

1-100K very sensitive (calibration!)
But strong magnetoresistance

Thermocouples

$$\Delta T_y = -\frac{\Delta V_y}{S_{ther}(T)}$$

Very sensitive (∆T~mK) but only above 10K

G. Grissonnanche, PhD Thesis (U. Sherbrooke)

Metal	Observed $R_{\rm H}$	Calculated $R_{\rm H}$	j
Li	-17.0	-13.1	1
Na	-25.0	-24.4	1
Cu	-5.5	-7.4	1
Ag	-8.4	-10.4	1
Zn	+4.1	-4.6	2
Cd	+6.0	-6.5	2

Table 1.1: Observed and calculated values of the Hall coefficient $R_{\rm H}$ in units of $10^{-11} {\rm m}^3 {\rm C}^{-1}$ for several metals. The calculated values assume j free electrons per atom.

Hall Resistivity of Al

