Übungen zu "Elektronische Eigenschaften von Festkörpern II: Supraleitung" (SS2023)

Exercise sheet 3 · Tutorial on 17.05.2023 · (A.Ustinov/G.Fischer)

6) Trapping flux

A thin superconductor has a hole of $10 \,\mu\text{m} \times 10 \,\mu\text{m}$ and is cooled below its transition temperature. During cooling, the earth's magnetic field (strength $H_e \approx 0.5$ G) is oriented perpendicular to the sample.

- a) How many flux quanta will be trapped in the hole of the superconductor?
- b) In experiments, the random motion of trapped vortices in superconducting circuits is a source of noise due to fluctuating local magnetic fields. Think about how this problem can be avoided.

7) Critical current of a cylindrical wire

Consider a long, superconducting cylindrical wire with radius R within the frame of the London theory, $\lambda \ll R$.

- a) How large is the critical current density through the wire as a function of the radius R and the critical magnetic field H_c ? Where does the current flow within the wire?
- b) Calculate the critical current density through a lead wire with an area of $A = 1 \text{ mm}^2$ at a temperature of 4.2 K.

For lead (Pb): $H_c(T = 0) = 803$ Oe, $T_c = 7.2$ K, and $\lambda(T = 0) = 39$ nm.

8) On unit systems

- a) Give the following physical quantities in SI- and Gaussian cgs-units and the value α with $[\text{quantity}]_{\text{SI}} \cong \alpha \cdot [\text{quantity}]_{\text{cgs}}$ for mass m, time t, magnetic induction B, and magnetic field H (e.g.: length: l_{SI} [m] $\cong 100 \cdot l_{\text{cgs}}$ [cm]).
- b) Give in SI- and in cgs-units:
 - Maxwell-equations
 - London-equations
 - Ginzburg-Landau equations
 - London penetration-depth λ
 - magnetic flux quantum Φ_0