Übungen zu "Elektronische Eigenschaften von Festkörpern II: Supraleitung" (SS2023)

Exercise sheet 6 · Tutorial on **21.06.2023** · (A.Ustinov/G.Fischer)

14) The BCS Theory

Review the basic ideas of the Bardeen-Cooper-Schrieffer theory. Specifically, please comment on:

- a) the role of the Debye frequency in the electron-electron interaction,
- b) why the formation of Cooper pairs favours electrons of opposite momenta, and
- c) the fact that most superconducting metals have a poor normal conductivity.

15) Mind the Gap

- a) How does the microscopic BCS theory of superconductivity explain the fact that current can flow without resistance?
- b) The BCS theory predicts superconductors to have an energy gap Δ_0 . Think about possibilities how one could measure Δ_0 .

16) Density of states

Let E_k be the energy of elementary excitations. It describes how much the system energy increases when an extra electron with momentum k is added to the system: $E_k = \sqrt{c^2 + \Delta^2}$ with $c_k = \frac{\hbar^2}{(k^2 - k^2)}$

$$E_k = \sqrt{\epsilon_k} + \Delta_0^-$$
 with $\epsilon_k = \frac{1}{2m} (k^- - k_F^-).$

- a) Plot the spectrum of elementary excitations $E_k(k)$.
- b) Calculate the density of states of elementary excitations $N_s(E) = d\nu/dE$ as function of energy E and gap Δ_0 . Let the density of states near the Fermi level for a normal metal be $N_n(E_F) = d\nu/d\epsilon$.
- c) Plot the density of states $N_s(E)$.
- d) Calculate how many times the density of states in the elementary excitation spectrum of the superconductor exceeds the density of electron states in the normal metal for excitation energies:
 - $1.01 \cdot \Delta_0$,
 - $1.50 \cdot \Delta_0$, and
 - $2.00 \cdot \Delta_0$.

17) Energy gap of Cadmium

For Cadmium we have $T_c = 0.517$ K. Calculate the energy gap at T = 0 K according to the BCS theory and compare the result with the experimental value of $1.5 \cdot 10^{-4}$ eV. Determine the wavelength of a photon, which is able to break a Cooper pair in Cadmium.

Evaluation of lecture (June 15th) and tutorials (June 14th)

Links also available on ILIAS (until June 16th);)

Evaluation for the lecture

Evaluation for the tutorials

Thanks for your participation!