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Introduction

0 The London theory does not take into account quantum effects

Q The first quantum phenomenological theory of superconductivity was the
Ginzburg-Landau theory

U The superconducting state is more ordered than the normal one

U The superconducting transition is a second order phase transition

O Order parameter for a superconductor is nonzero at 1" < 1.

Q Wavefunction of superconducting electrons W(r)

Qd U(7) can be taken as order parameter
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Second-order phase transitions

Examples:

» The ferromagnetic transition at the Curie point
= The transition of helium to the superfluid state

= Order-disorder transitions
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Free energy

WU(7) is the order parameter
() is normalized to the density of the Cooper pairs: |W(7)|* = n,/2
Consider a homogeneous superconductor at H =0

« \y does not depend on 7~ ,
- expansion of the free energy in powers of | W | near 7.

: 6}
Fq{) =5 Fn +(1|\D|2 -1- 3‘\If|4

F4o is the free energy density of the superconductor

F,, is its free energy density in the normal state

«, 3 are phenomenological expansion coefficients
characterising the material
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First order approximation

s I 3 i
Fy at minimum: d|lII|O2 =0 |:> |\I/O|2 — —Oé/ﬁ

F, — F=&’/28 = H2, /87 =) H> = 4ra’/B

Temperature dependence in the first order approximation in (7. — 1) :

a=0 atl ="1T.

= a~ ((T-T1T)
a< 0 at T <T.

B3>0 bothat "< 1. andat 1" >T. =) [ = const
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Gibbs free energy density

A superconductor in a uniform external magnetic field H,

Bi the exact microscopic
Gibbs free energy: (; = F — 0 field at a given point of
47 the superconductor
- Y 2 8 A
Gy = (Tn+05|\1’| +§|\Ij| >
2¢ . _|° H?> HH
+— |—iAVE - —Aw| + O
2m* & 87 4
- ~— — T -
the kinetic energy density (V x A2 (V x A)-H,
of the superconducting electrons ] - AT

Let us find equations for functions ¥ (7) and A(7)
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Variation ¢4+ 0f Gibbs free energy density

Let us solve the variational problem with respectto ¥ (#): Ou+«Gsg =0

Gl — /dV |:oz\If SU* 4+ B | U2 60" +

1 . * 2e * ) 2e -
-I-—(lﬁVﬁ\If — — AdVY ) (—1HV\P——A\IJ)] ;

4m & C
-
) 6«Geg = de [a\lf+,8\1/|\lf|2 +
1 2e )\’
+ —(—ihV——eA) V| SU* 4+
4dm C

% .
i j{[—ihv\y——emﬁ] ST dS = 0
C
)
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The first Ginzburg-Landau equation

For an arbitrary function 0" | both expressions in [...] must be zero.

We obtain the first equation of the Ginzburg-Landau (GL) theory

.. 1 2e )\ °
aqx+,,8\1r|\1r|2+—(ihv+—€A) T =0 (1)
4m e
and the boundary condition for it
2 .\ .
| (ihV\IJ-I——A‘If) n=20! (2)
1 C [

where 71 is the unit vector along the normal to the surface of a superconductor.
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Variation ¢z of Gibbs free energy density

Let us minimize the expression for (. with respect to A

1 . 26’ —
0 G.g = dV { — 0O = AVY — — AT~
AT / {4m A [(” c )

. (_mw_%gqfﬂ b= (¥ x A) - (¥ x 04) -

6 47
Ho (e <=\ | .
. (V X 5A) >} after elementary modifications
B
[ ihe . "
=) §:;Gsg = / > ('VY — VT +
| 2mc

2

-

mc?

- ‘ 1 o _, 5 _;
A|\If|2—|—4—V><V><A SAdV =0
71
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he second Ginzburg-Landau equation

2mec

5:Cer = /[me (U"VT — TVT) +

2

-

= 1 = - ~ =
AN+ =V x V x A] 6AdV =0
mc 7

For an arbitrary 5@, the above expression in [...] must be zero.

— — _—y — C — — —
As H =V x A andfrom Maxwell’s equation j, = 4—V xV x A,
r

we obtain the second equation of the Ginzburg-Landau (GL) theory

i iR | 2e” 5
Go= L (VY — Vo) — 22 A

2m mec
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Normalized form of GL equations

Let us go over to a dimensionless wavefunction 1 (7) = W (r) /W

where \]:102 — ?15/2 = |Gﬂ|/6

h* 5 mec? me? 3

52_ . 2\2 — _

 dmlal  dmnge?  8me2|al

We will introduce two
new notations:

: - 2 =N * ).
1st equation £ 1V—|—(I—A v — 4P|t =0

0

. =, =, g (I)U * * |(lzb|‘2 g
2nd equation VxVXA=-—i "'V — V) — A
e (P VY —dVY) —
whc
where ¢y = is the magnetic flux quantum.
e
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Boundary conditions

If v is written as ¥ = | eie, the 2nd GL equation becomes

V X v >< 14 — )\ 5 2 v 9 - 14
= 719

The boundary condition of no supercurrent flowing through the surface:

2 S\ s
(iV-!— —_ A) nyY =0 — N

Py

where 71 is the unit vector along the normal to the surface of a superconductor.

- iti 2T =
Note: '!'he boundgry condition W = & | B = lanp
for an interface with a normal metal: P,

n where a is an arbitrary real number.

—>
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Gauge invariance of the GL theory

It is well known that a choice of A is equivocal. The transformation A=A+ Vo

does not change the magnetic field: /

H=VxA=VxA a single-valued
scalar function

To make results of theoretical calculations independent of @ (T)
the choice of A (make them gauge invariant) we can use ﬂ

A=A+ Vo
. 2m () VXxVep=0
Y = Y exp |1 B @1
One can verify the gauge invariance . - |¢,f|2 P, -
of both GL equations, e.g. VxVxA = 3 (2 Vo' — A’)
' T
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Coherence length and penetration depth

The 1st GL equation: —&%d* /daz* — ¢+ 07 =0 (3)
Yy = Y(x)
For a thin normal layer: v =1 —<(xz), <(x) << 1.
0 ¥ m) 2 d%(x)/dx” —2e(x) =0 .
Since c(o0)=0 &= £=¢2(0) e~V2e/t
{ is the characteristic scale of variation of the order
N S parameter v’ . This length ¢ is called the coherence length.
normal  super- 5 h° 9 mc? mc?3
metal conductor Recall: ¢ = : = — = -
4m|a drnge?  8me?|«]
= A~ (L - T Y2, ¢~ (T.—T)**.  The GL parameter | n = \/¢
penetration depth coherence length
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Proximity effect at NS interface

The role of the coherence length becomes evident normal super-

when we consider clean interface between a normal metal conductor
metal N and a superconductor S.

» The Cooper pairs can penetrate from S into N N S
and “live” there for some time.

* A thin N-layer becomes superconducting.

» The penetration of the Cooper pairs from S into 7.0 T

N results in their reduced density in S.

The behavior of the order parameter in the S region
(x>0 ) can be determined by solving Eq. (3)

; ; 1
—fz(dy'f}/d:r)z — PP+ 5 Yt = C
At © — oo we have (d¢)/dz) — 0 andy — 1

— C = —1/2. =) % = tanh [(:1: — :1:(;)/\/55]

v
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Order parameter in N

1) = tanh [(1 — ru)/\/§£]

Here the constant o is to be determined from the
boundary condition at z = 0.

1 dv 1 T b
\,_ﬁ:_ |:{>—sinh(\/§ﬂ):\/_—.
o dr b § 3

The behavior of the order parameter in the N region
(x <0) can be determined by solving Eq. (3).

an ~ (1T'"— T.,) ,sothat o, < O at 1" < T,
andoy, >0 at7T > T.,. Forl'—17T,., <« T., we get

—5112(c121,z’)/c1:1:2) + 2 + 2° = 0| where £.2 = h2/4fman.

Tcn & T < TCS

&n| €

For ¢/ < 1 using ¥» — 0 at x — ocowe get ¥ = gexp(—|xz|/&,) .
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Coherence length in N

The order parameter penetrates the N region and decays there exponentially
over the characteristic length &, .

Microscopic theory calculation gives the following results:

“Clean” case: when the electron mean free path [, > &,

o h’UFll
- 27kpT

S

“Dirty” case: when [, < &,

hUFnln
'511 — <—

6kl

)1/2

|:> &n ~0.1—-1um
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