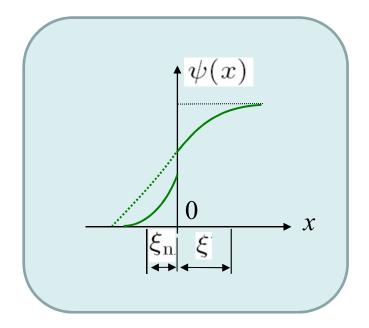
Superconductivity Lecture 4



The Ginzburg-Landau Theory

- Introduction
- Second-order phase transitions
- Wavefunction of superconducting electrons
- Free energy density
- Ginzburg-Landau (GL) equations
- Boundary conditions
- Coherence length and penetration depth
- Proximity effect

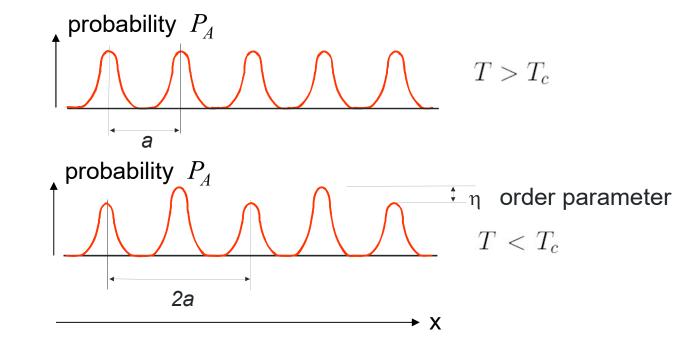
Introduction

- ☐ The London theory does not take into account quantum effects
- ☐ The first quantum *phenomenological* theory of superconductivity was the **Ginzburg-Landau theory**
 - ☐ The superconducting state is more ordered than the normal one
 - ☐ The superconducting transition is a second order phase transition
 - $lue{}$ Order parameter for a superconductor is nonzero at $T < T_c$
- $lue{}$ Wavefunction of superconducting electrons $\Psi(\vec{r})$
- lacktriangledown $\Psi(\vec{r})$ can be taken as <u>order parameter</u>

Second-order phase transitions

Examples:

- The ferromagnetic transition at the Curie point
- The transition of helium to the superfluid state
- Order-disorder transitions



A = B

50% 50%

Free energy

- $\Psi(\vec{r})$ is the order parameter
- $\Psi(\vec{r})$ is normalized to the density of the Cooper pairs: $|\Psi(\vec{r})|^2 = n_s/2$

Consider a homogeneous superconductor at $\vec{H}=0$

- Ψ does not depend on \vec{r}
- expansion of the free energy in powers of $\left|\Psi_{0}\right|^{2}$ near T_{c}

$$F_{s0} = F_n + \alpha |\Psi|^2 + \frac{\beta}{2} |\Psi|^4$$

 F_{s0} is the free energy density of the superconductor

 F_n is its free energy density in the normal state

 α , β are phenomenological expansion coefficients characterising the material

First order approximation

$$F_{s0}$$
 at minimum: $\frac{\mathrm{d}F_{s0}}{\mathrm{d}|\Psi|^2}=0$ \Longrightarrow $|\Psi_0|^2=-lpha/eta$

$$F_n - F_{s0} = \alpha^2 / 2\beta = H_{cm}^2 / 8\pi \implies H_{cm}^2 = 4\pi\alpha^2 / \beta$$

Temperature dependence in the first order approximation in (T_c-T) :

$$\beta>0$$
 both at $T< T_c$ and at $T>T_c$ \Longrightarrow $\beta={\rm const}$

Gibbs free energy density

A superconductor in a uniform external magnetic field $ec{H}_0$

Gibbs free energy: $G = F - \frac{\vec{B}\vec{H}_0}{4\pi}$

the exact microscopic field at a given point of the superconductor

$$G_{sH} = G_n + \alpha |\Psi|^2 + \frac{\beta}{2} |\Psi|^4 + \frac{1}{2m^*} \left| -i\hbar \nabla \Psi - \frac{2e}{c} \vec{A} \Psi \right|^2 + \frac{H^2}{8\pi} - \frac{\vec{H} \vec{H}_0}{4\pi}$$

the kinetic energy density of the superconducting electrons

$$\frac{(\vec{\nabla} \times \vec{A})^2}{8\pi} - \frac{(\vec{\nabla} \times \vec{A}) \cdot \vec{H}_0}{4\pi}$$

Let us find equations for functions $\Psi(\vec{r})$ and $\vec{A}(\vec{r})$

Variation δ_{Ψ^*} of Gibbs free energy density

Let us solve the variational problem with respect to $\Psi^*(\vec{r})$: $\delta_{\Psi^*}G_{sH}=0$

$$\delta_{\Psi^*} G_{sH} = \int dV \left[\alpha \Psi \, \delta \Psi^* + \beta \Psi \, |\Psi|^2 \, \delta \Psi^* + \frac{1}{4m} \left(i\hbar \nabla \, \delta \Psi^* - \frac{2e}{c} \vec{A} \, \delta \Psi^* \right) \left(-i\hbar \nabla \Psi - \frac{2e}{c} \vec{A} \, \Psi \right) \right] ;$$

$$\Longrightarrow \delta_{\Psi^*} G_{sH} = \int dV \left[\alpha \Psi + \beta \Psi \, |\Psi|^2 + \frac{1}{4m} \left(-i\hbar \nabla - \frac{2e}{c} \vec{A} \right)^2 \Psi \right] \delta \Psi^* + \frac{1}{4m} \left(-i\hbar \nabla \Psi - \frac{2e}{c} \vec{A} \Psi \right) \delta \Psi^* dS = 0 .$$

The first Ginzburg-Landau equation

For an arbitrary function $\delta\Psi^*$, both expressions in […] must be zero.

We obtain the first equation of the Ginzburg-Landau (GL) theory

$$\alpha\Psi + \beta\Psi |\Psi|^2 + \frac{1}{4m} \left(i\hbar\nabla + \frac{2e}{c}\vec{A} \right)^2 \Psi = 0$$
 (1)

and the boundary condition for it

$$\left(i\hbar\nabla\Psi + \frac{2e}{c}\vec{A}\,\Psi\right)\,\vec{n} = 0\tag{2}$$

where \vec{n} is the unit vector along the normal to the surface of a superconductor.

Variation $\delta_{\vec{A}}$ of Gibbs free energy density

Let us minimize the expression for G_{sH} with respect to \vec{A} :

$$\begin{split} \delta_{\vec{A}}G_{sH} &= \int \mathrm{d}V \left\{ \frac{1}{4m} \, \delta_{\vec{A}} \left[\left(\mathrm{i}\hbar \, \nabla \Psi^* - \frac{2e}{c} \, \vec{A} \Psi^* \right) \right. \right. \\ & \cdot \left. \left(-\mathrm{i}\hbar \, \nabla \Psi - \frac{2e}{c} \, \vec{A} \Psi \right) \right] + \frac{1}{4\pi} \, \left(\vec{\nabla} \times \vec{A} \right) \cdot \left(\vec{\nabla} \times \delta \vec{A} \right) - \\ & \left. - \frac{\vec{H}_0}{4\pi} \cdot \left(\vec{\nabla} \times \delta \vec{A} \right) \right\} \quad \text{;} \quad \text{after elementary modifications} \end{split}$$

$$\Rightarrow \delta_{\vec{A}}G_{sH} = \int \left[\frac{i\hbar e}{2mc} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right) + \frac{2e^2}{mc^2} \vec{A} |\Psi|^2 + \frac{1}{4\pi} \vec{\nabla} \times \vec{\nabla} \times \vec{A} \right] \delta \vec{A} dV = 0$$

The second Ginzburg-Landau equation

$$\delta_{\vec{A}}G_{sH} = \int \left[\frac{i\hbar e}{2mc} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right) + \frac{2e^2}{mc^2} \vec{A} |\Psi|^2 + \frac{1}{4\pi} \vec{\nabla} \times \vec{\nabla} \times \vec{A} \right] \delta \vec{A} dV = 0$$

For an arbitrary $\delta \vec{A}$, the above expression in [...] must be zero.

As $\vec{H}=\vec{\nabla}\times\vec{A}$ and from Maxwell's equation $\vec{j}_s=\frac{c}{4\pi}\vec{\nabla}\times\vec{\nabla}\times\vec{A}$, we obtain the second equation of the Ginzburg-Landau (GL) theory

$$\vec{j}_s = -\frac{\mathrm{i}\hbar e}{2m} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right) - \frac{2e^2}{mc} |\Psi|^2 \vec{A}$$

Normalized form of GL equations

Let us go over to a dimensionless wavefunction $\psi(\vec{r}) = \Psi(\vec{r})/\Psi_0$

where
$$\Psi_0^2 = n_s/2 = |\alpha|/\beta$$

We will introduce two new notations:
$$\xi^2 = \frac{\hbar^2}{4m|\alpha|}\;; \quad \lambda^2 = \frac{mc^2}{4\pi n_s e^2} = \frac{mc^2\beta}{8\pi e^2|\alpha|}$$

$$\xi^{2} \left(i\nabla + \frac{2\pi}{\Phi_{0}} \vec{A} \right)^{2} \psi - \psi + \psi |\psi|^{2} = 0$$

1st equation
$$\xi^2 \left(i \nabla + \frac{2\pi}{\Phi_0} \vec{A} \right)^2 \psi - \psi + \psi \left| \psi \right|^2 = 0$$
 2nd equation
$$\vec{\nabla} \times \vec{\nabla} \times \vec{A} = -i \frac{\Phi_0}{4\pi \lambda^2} (\psi^* \nabla \psi - \psi \nabla \psi^*) - \frac{|\psi|^2}{\lambda^2} \vec{A}$$

where
$$\Phi_0 = \frac{\pi \hbar c}{e}$$
 is the magnetic flux quantum.

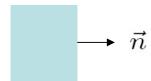
Boundary conditions

If ψ is written as $\psi = |\psi| \, \mathrm{e}^{\mathrm{i} \theta}$, the 2nd GL equation becomes

$$\vec{\nabla} \times \vec{\nabla} \times \vec{A} = \frac{|\psi|^2}{\lambda^2} \left(\frac{\Phi_0}{2\pi} \nabla \theta - \vec{A} \right)$$

The boundary condition of no supercurrent flowing through the surface:

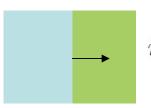
$$\left(i\nabla + \frac{2\pi}{\Phi_0}\vec{A}\right) \vec{n}\psi = 0$$



where \vec{n} is the unit vector along the normal to the surface of a superconductor.

Note: The boundary condition for an interface with a normal metal:

$$\left(\mathrm{i}\nabla + \frac{2\pi}{\Phi_0}\vec{A}\right) \vec{n}\psi = \mathrm{i}a\psi \quad ,$$



where a is an arbitrary real number.

Gauge invariance of the GL theory

It is well known that a choice of \vec{A} is equivocal. The transformation $\vec{A} = \vec{A}' + \nabla \varphi$ does not change the magnetic field:

$$\vec{H} = \vec{\nabla} \times \vec{A} = \vec{\nabla} \times \vec{A}'$$

To make results of theoretical calculations independent of the choice of \vec{A} (make them gauge invariant) we can use

$$\vec{A} = \vec{A}' + \nabla \varphi$$

$$\psi = \psi' \exp \left[i \frac{2\pi}{\Phi_0} \varphi(\vec{r}) \right]$$

One can verify the gauge invariance of both GL equations, e.g.

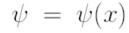
$$ec{
abla} imes ec{
abla} imes ec{$$

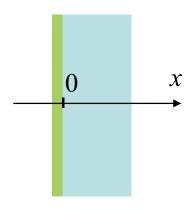
a single-valued scalar function

$$\varphi(\vec{r})$$

$$\vec{\nabla} \times \vec{\nabla} \varphi = 0$$

Coherence length and penetration depth





S N normal superconductor metal

The 1st GL equation:
$$-\xi^2 d^2 \psi / dx^2 - \psi + \psi^3 = 0$$
 (3)

For a thin normal layer: $\psi = 1 - \varepsilon(x)$, $\varepsilon(x) \ll 1$.

$$\Longrightarrow \quad \xi^2 d^2 \varepsilon(x) / dx^2 - 2\varepsilon(x) = 0 \ .$$

Since
$$\varepsilon(\infty) = 0$$
 \Longrightarrow $\varepsilon = \varepsilon(0) e^{-\sqrt{2}x/\xi}$

 ξ is the characteristic scale of variation of the order parameter ψ . This length ξ is called the <u>coherence length</u>.

$$\text{Recall:}\quad \xi^2 = \frac{\hbar^2}{4m|\alpha|} \; ; \quad \lambda^2 = \frac{mc^2}{4\pi n_s e^2} = \frac{mc^2\beta}{8\pi e^2|\alpha|}$$

The GL parameter
$$\kappa = \lambda/\epsilon$$

Proximity effect at NS interface

The role of the coherence length becomes evident when we consider clean interface between a normal metal N and a superconductor S.

- The Cooper pairs can penetrate from S into N and "live" there for some time.
- A thin N-layer becomes superconducting.
- The penetration of the Cooper pairs from S into N results in their reduced density in S.

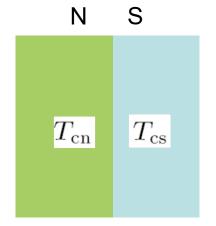
The behavior of the order parameter in the S region (x > 0) can be determined by solving Eq. (3)

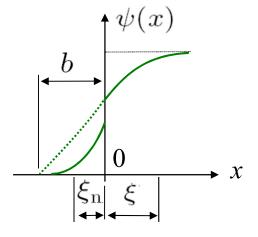
$$-\xi^{2} (d\psi/dx)^{2} - \psi^{2} + \frac{1}{2}\psi^{4} = C$$

At $x \to \infty$ we have $(\mathrm{d}\psi/\mathrm{d}x) \to 0$ and $\psi \to 1$

$$ightharpoondown C = -1/2.
ightharpoondown \psi = \tanh \left[(x - x_0) / \sqrt{2} \xi \right]$$

normal supermetal conductor





Order parameter in N

$$\psi = \tanh\left[(x - x_0) / \sqrt{2}\xi \right]$$

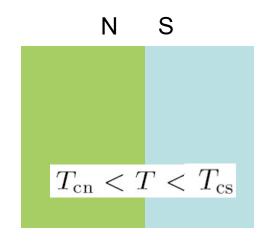
Here the constant x_0 is to be determined from the boundary condition at x = 0.

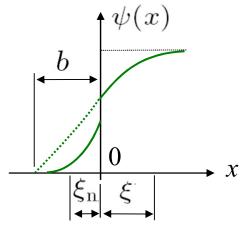
$$\frac{1}{\psi} \frac{\mathrm{d}\psi}{\mathrm{d}x} = \frac{1}{b} \implies -\sinh\left(\sqrt{2} \frac{x_0}{\xi}\right) = \sqrt{2} \frac{b}{\xi} .$$

The behavior of the order parameter in the N region (x < 0) can be determined by solving Eq. (3).

$$lpha_{
m n} \sim (T-T_{
m cn})$$
 , so that $lpha_{
m n} < 0$ at $T < T_{
m cn}$ and $lpha_{
m n} > 0$ at $T > T_{
m cn}$. For $T-T_{
m cn} \ll T_{
m cn}$ we get

$$-\xi_{\rm n}^{\ 2}({\rm d}^2\psi/{\rm d}x^2) + \psi + \psi^3 = 0$$
 where $\xi_{\rm n}^{\ 2} = \hbar^2/4m\alpha_{\rm n}$.





For $\psi \ll 1$ using $\psi \to 0$ at $x \to \infty$ we get $\psi = \psi_0 \exp(-|x|/\xi_{\rm n})$.

Coherence length in N

The order parameter penetrates the N region and decays there exponentially over the characteristic length $\xi_{\rm n}$.

Microscopic theory calculation gives the following results:

<u>"Clean" case</u>: when the electron mean free path $l_{
m n}\gg \xi_{
m n}$

$$\xi_{\mathrm{n}} = rac{\hbar v_{\mathrm{Fn}}}{2\pi k_{\mathrm{B}} T}$$

<u>"Dirty" case</u>: when $l_{
m n} \ll \xi_{
m n}$

$$\xi_{
m n} = \left(rac{\hbar v_{
m Fn} l_{
m n}}{6\pi k_{
m B} T}
ight)^{1/2}$$

$$\xi_{\rm n} \sim 0.1 - 1 \, \mu {\rm m}$$