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Long junction in weak magnetic field

Let us assume first

Ferrell-Prange equation:
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Short junction in magnetic field

Fraunhofer 
pattern

Consider a short junction

where where
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Superconducting quantum interferometers 

dc SQUID
(2 junctions)

rf SQUID
(1 junction)

Superconducting QUantum Interference Devices
(SQUIDs) have opened new horizons in 
measurement techniques. 

SQUID-based instruments are unique in their 
sensitivity.

SQUID magnetometers are able to resolve flux 
increments of ~ 10-10 G.

Precision SQUID voltmeters reach the sensitivity 
of ~ 10-15 V.
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The term             is omitted because the 
contour passes everywhere through the 
interior of the superconductor, well away 
from the edges.I

Two-junction (dc) SQUID
dc = “direct current”
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Magnetic field pattern of dc SQUID

Dependence of the maximum supercurrent 
through the two-junction interferometer on the 

total magnetic flux through its interior.

is the screening current
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dc SQUID operation principle

dc
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Single junction (rf) SQUID

loop inductance

we get implicit relation between     and      :

1
2
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rf SQUID operation principle

CTLT

~rf
generator

rf
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rf SQUID characteristics



Alexey Ustinov   Superconductivity:   Lecture 10 11

Long Josephson junctions

• Long junction in magnetic field
• Time-dependent dynamics
• Perturbed sine-Gordon equation
• Plasma waves
• Solitons and antisolitons, breathers
• Multi-soliton solutions
• Junction geometries
• Perturbations and power balance
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Ferrell-Prange equation

where                                  is the Josephson 

penetration depth

Ferrell-Prange equation:

(1)
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Equivalent circuit

Ferrell-Prange equation:The Kirchhoff current law for point A yields
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Fluxon in long junction

there is an exact solution

corresponding to a fluxon
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Time-dependent equivalent circuit

Kirchhoff current law for the node A:

The voltage drop in the x-direction

from the 2nd Josephson relation
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Phase dynamics in a long junction

Inserting I1 and  I2 into                                                                          we get 

electric and magnetic fields

The angular Josephson plasma frequency

The specific inductance and capacitance per unit area of junction

The velocity of the propagation 
of electromagnetic waves in 
a long Josephson junction

is called the 
Swihart velocity

(2)
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Perturbed sine-Gordon equation

Using normalized units                       and                          we can rewrite Eq.(2) as

(3)

Here we have introduced a compact notation for the derivatives:

The last three dimensionless coefficients in Eq.(3) are defined as

tunneling of quasiparticles      surface currents damping       bias current 



Alexey Ustinov   Superconductivity:   Lecture 10 18

Josephson plasma waves

Let us first assume

(3)

(unperturbed) sine-Gordon equation

Small-amplitude waves

dispersion relation
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Solitons and antisolitons
soliton

antisoliton

These solutions are invariant with respect 
to the Lorentz transformation:

velocity-dependent “mass”
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Multi-soliton solutions

A collision between a soliton 
and an antisoliton is described 
by the solution:

Solution for a soliton-soliton collision:
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Breather

A bound state, in which the soliton and antisoliton oscillate around their common 
center of mass, is called a breather.
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Mechanical analog of a long junction

A chain of coupled pendulums
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F0

Periodic boundary conditions
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A soliton in annular Josephson junction
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Current-voltage characteristics of annular junction
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Example:

1 trapped vortex 
(n=1)

+ 1 vortex-antivortex 
pair (m=1)

Multi-soliton dynamics in annular junction
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Long junction geometries
overlap geometry inline geometry
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SG Hamiltonian without perturbations
Equation                                     can be attributed to a Hamiltonian system for

As                                     we get: 

For the unperturbed sine-Gordon system, the energy is conserved.
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SG equation with perturbations

Perturbed sine-Gordon equation

perturbations

From                                                              we get:

energy
dissipation

energy
input
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Energy balance of a single soliton

by inserting this into Hamiltonian we get

the soliton energy                                            as that of relativistic particle with 

rest mass Since                   are assumed to be small, we take as an 
approximate solution of the perturbed equation the soliton-type solution given 
above with a time-dependent velocity

Using the last formula of the previous slide we get:

The power balance velocity:



Alexey Ustinov   Superconductivity:   Lecture 10 31

Comparison with numerical simulations

Dependence of the power balance soliton velocity on the bias current with a = 0.08
and b = 0.06 (dashed line), and with a = 0.1 and b = 0 (solid). 
Open dots show the result of full numerical simulations with a = 0.1 and b = 0.


