Superconductivity Lecture 9

Long junction in weak magnetic field

Ferrell-Prange equation:

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} = \frac{1}{\lambda_\mathrm{J}^2} \sin \varphi$$

Let us assume first $|\varphi| \ll 1$

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} \approx \frac{1}{\lambda_\mathrm{J}^2} \varphi$$

$$\varphi(x) = \varphi(0) \exp\left(-\frac{x}{\lambda_{\rm J}}\right)$$

$$H(x) = \frac{\Phi_0}{2\pi\mu_0\Lambda} \frac{\mathrm{d}\varphi}{\mathrm{d}x} = H_0 \exp\left(-\frac{x}{\lambda_\mathrm{J}}\right)$$

Short junction in magnetic field

Consider a short junction $L \ll \lambda_{
m J}$

$$\varphi(x) = \frac{2\pi\mu_0\Lambda}{\Phi_0}H_0x + C_0$$

$$j_{\rm s}(x) = j_{\rm c} \sin \left[\frac{2\pi\mu_0 \Lambda}{\Phi_0} H_0 x + C_0 \right]$$

$$I_{\rm s} = j_{\rm c} \int_{-W/2}^{W/2} \mathrm{d}y \int_{-L/2}^{L/2} \sin\left(\frac{2\pi}{\phi}x + C_0\right) \,\mathrm{d}x$$

$$= j_{\rm c} L W \frac{\phi}{\pi L} \sin \frac{\pi L}{\phi} \sin C_0 ,$$

Fraunhofer pattern
$$0.5$$
 dx
magnetic flux Φ/Φ_0

$$=j_{\rm c}LW\frac{\phi}{\pi L}\sin\frac{\pi L}{\phi}\sin C_0\;,$$
 where $\phi=\Phi_0/(\mu_0\Lambda H_0)$
$$=j_{\rm c}LW\frac{\phi}{\pi L}\sin\frac{\pi L}{\phi}\sin C_0\;,$$
 where $\Phi=\mu_0\Lambda H_0L$

Superconducting quantum interferometers

dc SQUID (2 junctions)

rf SQUID (1 junction)

Superconducting QUantum Interference Devices (SQUIDs) have opened new horizons in measurement techniques.

SQUID-based instruments are unique in their sensitivity.

SQUID magnetometers are able to resolve flux increments of $\sim 10^{-10}$ G.

Precision SQUID voltmeters reach the sensitivity of $\sim 10^{-15}$ V.

Two-junction (dc) SQUID

dc = "direct current"

two-junction SQUID

The term $2m\vec{v}_{\rm s}$ is omitted because the contour passes everywhere through the interior of the superconductor, well away from the edges.

$$\varphi_a = \theta_2 - \theta_1$$
, $\varphi_b = \theta_4 - \theta_3$

$$\varphi_a - \varphi_b = \frac{2e}{\hbar} \oint \vec{A} \, d\vec{l} = 2\pi \Phi / \Phi_0$$

$$I = I_{\rm c} \left(\sin \varphi_{\rm a} + \sin \varphi_{\rm b} \right) = 2I_{\rm c} \cos \frac{\pi \Phi}{\Phi_0} \sin \left(\varphi_{\rm b} + \frac{\pi \Phi}{\Phi_0} \right)$$

Magnetic field pattern of dc SQUID

$$I_{\text{max}} = 2I_{\text{c}} \left| \cos \left(\pi \Phi / \Phi_0 \right) \right|$$

Dependence of the maximum supercurrent through the two-junction interferometer on the total magnetic flux through its interior.

$$\beta = 2LI_{\rm c}/\Phi_0$$

$$\Phi = \Phi_{\rm e} - LI_{\rm sc}$$

 $I_{
m sc}$ is the screening current

dc SQUID operation principle

Single junction (rf) SQUID

L loop inductance

$$\hbar (\theta_2 - \theta_1) = 2e \int_1^2 \vec{A} \, d\vec{l}$$

$$\hbar \varphi = 2e \oint \vec{A} \, d\vec{l}$$

$$\varphi = 2\pi \Phi / \Phi_0$$

$$\Phi = \Phi_0 - LI_{sc}$$

we get implicit relation between Φ and Φ_e :

$$\Phi_{\rm e} = \Phi + LI_{\rm c} \sin(2\pi\Phi/\Phi_0)$$

rf SQUID operation principle

rf SQUID characteristics

Long Josephson junctions

- Long junction in magnetic field
- Time-dependent dynamics
- Perturbed sine-Gordon equation
- Plasma waves
- Solitons and antisolitons, breathers
- Multi-soliton solutions
- Junction geometries
- Perturbations and power balance

Ferrell-Prange equation

Ferrell-Prange equation:

(1)
$$\frac{\mathrm{d}^2\varphi}{\mathrm{d}x^2} = \frac{1}{\lambda_\mathrm{J}^2}\sin\varphi \qquad \text{where} \quad \lambda_\mathrm{J} = \sqrt{\frac{\Phi_0}{2\pi\mu_0\Lambda j_\mathrm{c}}} \quad \text{is the Josephson}$$
 penetration depth

Alexey Ustinov Superconductivity: Lecture 10 12

Equivalent circuit

$$I_{1}(x) = \frac{\varphi(x) - \varphi(x - dx)}{L' dx} \frac{\Phi_{0}}{2\pi};$$

$$I_{1}(x + dx) = \frac{\varphi(x + dx) - \varphi(x)}{L' dx} \frac{\Phi_{0}}{2\pi};$$

$$dI_{1} = j_{c} dx \sin \varphi.$$

The Kirchhoff current law for point A yields

$$I_1(x+\mathrm{d}x) - I_1(x) = dI_1$$

$$\frac{\mathrm{d}I_1}{\mathrm{d}x} = \frac{\Phi_0}{2\pi} \frac{\varphi(x + \mathrm{d}x) - 2\varphi(x) + \varphi(x - \mathrm{d}x)}{L'\,\mathrm{d}x^2} = j_{\mathrm{c}}\sin\varphi$$

⇒ Ferrell-Prange equation:

$$\frac{\Phi_0}{2\pi L'} \frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} = j_{\mathrm{c}} \sin \varphi \,,$$

$$L' = \Phi_0/(2\pi j_{\rm c}\lambda_{\rm J}^2) = \mu_0 \Lambda$$

Fluxon in long junction

H

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} = \frac{1}{\lambda_\mathrm{J}^2} \sin \varphi$$

there is an exact solution

$$\varphi(x) = 4 \arctan \left[\exp \frac{x - x_0}{\lambda_{\rm J}} \right]$$

corresponding to a fluxon

$$H(x) = \frac{\Phi_0}{\pi \mu_0 \Lambda \lambda_J} \frac{2 \exp[(x - x_0)/\lambda_J]}{1 + \exp[2(x - x_0)/\lambda_J]}$$

$$\Phi = \frac{\Phi_0}{2\pi} \int_{-\infty}^{+\infty} \frac{\mathrm{d}\varphi(x)}{\mathrm{d}x} \mathrm{d}x = \Phi_0$$

Time-dependent equivalent circuit

Kirchhoff current law for the node A:

$$\frac{\partial (I_1 + I_2)}{\partial x} = j_{\rm B} - C \frac{\partial V}{\partial t} - \frac{V}{R} - j_{\rm c} \sin \varphi$$

The voltage drop in the x-direction

$$dV = -R_{\rm n}I_2 dx = -L'\frac{\partial I_1}{\partial t} dx$$

from the 2nd Josephson relation

$$\frac{\partial I_1}{\partial t} = -\frac{1}{L'} \frac{\partial V}{\partial x} = -\frac{\Phi_0}{2\pi L'} \frac{\partial^2 \varphi}{\partial x \partial t}$$

Phase dynamics in a long junction

Inserting I_I and I_2 into $\frac{\partial (I_1 + I_2)}{\partial x} = j_B - C \frac{\partial V}{\partial t} - \frac{V}{R} - j_c \sin \varphi$ we get

$$\frac{\partial^2 \varphi}{\partial x^2} - L'C \frac{\partial^2 \varphi}{\partial t^2} = \frac{2\pi L'}{\Phi_0} j_c \left(\sin \varphi - \frac{j_B}{j_c} \right) + \frac{L'}{R} \frac{\partial \varphi}{\partial t} - \frac{L'}{R_n} \frac{\partial^3 \varphi}{\partial x^2 \partial t}$$
(2)

electric and magnetic fields $E = \frac{V}{t_{\rm ex}} = \frac{1}{t_{\rm ex}} \frac{\Phi_0}{2\pi} \frac{\mathrm{d}\varphi}{\mathrm{d}t}$; $H = \frac{1}{\mu_0 \Lambda} \frac{\Phi_0}{2\pi} \frac{\mathrm{d}\varphi}{\mathrm{d}x}$.

 $\omega_{\rm p} = \sqrt{\frac{2\pi j_{\rm c}}{\Phi_{\rm o} C}}$ The angular Josephson plasma frequency

The specific inductance and capacitance per unit area of junction

$$\begin{cases} L' = \mu_0 \Lambda \\ C = \frac{\epsilon \epsilon_0}{t_{\text{ox}}} \end{cases}$$

The velocity of the propagation of electromagnetic waves in a long Josephson junction

$$ar{c} = \lambda_{
m J}\,\omega_{
m p} = rac{1}{\sqrt{L'C}} = c\sqrt{rac{t_{
m ox}}{\epsilon\Lambda}} \qquad {
m is called \ the} \ {
m \it Swihart \ velocity}$$

Perturbed sine-Gordon equation

Using normalized units $\frac{x}{\lambda_{\rm J}} \to x$ and $\frac{t}{\omega_{\rm p}^{-1}} \to t$ we can rewrite Eq.(2) as

$$\varphi_{xx} - \varphi_{tt} = \sin \varphi + \alpha \varphi_t - \beta \varphi_{xxt} - \gamma \tag{3}$$

Here we have introduced a compact notation for the derivatives:

$$\varphi_{xx} \equiv \frac{\partial^2 \varphi}{\partial x^2}; \quad \varphi_{tt} \equiv \frac{\partial^2 \varphi}{\partial t^2}; \quad \varphi_t \equiv \frac{\partial \varphi}{\partial t}; \quad \varphi_{xxt} \equiv \frac{\partial^3 \varphi}{\partial x^2 \partial t}.$$

The last three dimensionless coefficients in Eq.(3) are defined as

$$\alpha \equiv \sqrt{\frac{\Phi_0}{2\pi j_{\rm c}R^2C}} = \frac{1}{RC\omega_{\rm p}} \;, \quad \beta \equiv \sqrt{\frac{2\pi j_{\rm c}(L')^2}{\Phi_0CR_{\rm n}^2}} = \frac{\omega_{\rm p}L'}{R_{\rm n}} \;, \quad \gamma \equiv \frac{j_{\rm B}}{j_{\rm c}} \;$$
 tunneling of quasiparticles surface currents damping bias current

Alexey Ustinov Superconductivity: Lecture 10

17

Josephson plasma waves

Let us first assume $\alpha = \beta = \gamma = 0$

$$\varphi_{xx} - \varphi_{tt} = \sin \varphi$$
 (3)

(unperturbed) sine-Gordon equation

Small-amplitude waves $|\varphi| \ll 1$

$$\varphi_{xx} - \varphi_{tt} = \varphi$$

$$\varphi(x,t) = \varphi_0 \exp\left[i(kx - \omega t)\right],$$

dispersion relation

$$\omega = \sqrt{1 + k^2} \,.$$

Solitons and antisolitons

soliton

$$\varphi(x,t) = \varphi_{\rm F} \equiv 4 \arctan \left[\exp \left(\frac{x - vt - x_0}{\sqrt{1 - v^2}} \right) \right]$$

antisoliton

$$\varphi(x,t) = \varphi_{\bar{F}} \equiv 4 \arctan \left[\exp \left(-\frac{x - vt - x_0}{\sqrt{1 - v^2}} \right) \right]$$

These solutions are invariant with respect to the *Lorentz transformation*:

$$x \Rightarrow x' = \frac{x - vt}{\sqrt{1 - v^2}};$$

$$t \Rightarrow t' = \frac{t - x/v}{\sqrt{1 - v^2}}.$$

$$t \Rightarrow t' = \frac{t - x/v}{\sqrt{1 - v^2}}$$

velocity-dependent "mass" $m(v) = \frac{8}{\sqrt{1-v^2}}$.

Multi-soliton solutions

A collision between a soliton and an antisoliton is described by the solution:

$$\varphi_{F\bar{F}} = 4 \arctan \left[\frac{1}{v} \frac{\sinh \left(\frac{vt}{\sqrt{1-v^2}} \right)}{\cosh \left(\frac{x}{\sqrt{1-v^2}} \right)} \right]$$

Solution for a soliton-soliton collision:

$$\varphi_{\text{FF}} = 4 \arctan \left[v \frac{\sinh \left(\frac{x}{\sqrt{1 - v^2}} \right)}{\cosh \left(\frac{vt}{\sqrt{1 - v^2}} \right)} \right]$$

Breather

A bound state, in which the soliton and antisoliton oscillate around their common center of mass, is called a *breather*.

$$\varphi(x,t) = 4 \arctan \left[\tan \theta \frac{\sin(t \cos \theta)}{\cosh(x \sin \theta)} \right], \text{ where } 0 < \theta < \pi/2.$$

Mechanical analog of a long junction

A chain of coupled pendulums

$$\Theta \ddot{\varphi}_i - \varrho(\varphi_{i-1} - 2\varphi_i + \varphi_{i+1}) + \zeta \dot{\varphi}_i + Mgl\sin\varphi_i = T$$

$$\alpha = \frac{\zeta}{\sqrt{\Theta Mgl}} \,, \quad \gamma = \frac{T}{Mgl}$$

	ا ۱۹۵۵ م		
D) Wink (Soliton	symbol	electrical quantity	mechanical quantity
D)	φ	phase difference	pendulum angle
The state of the s	φ_x	magnetic field	angle variation along chain
1000-0000	$arphi_t$	voltage	angular velocity
VIΨ	Q	$(inductance)^{-1}$	elastic coupling constant
λ_J	\sim x	capacitance	momentum of inertia
	Mgl	critical current	gravitational torque
	T	bias current	external torque
	ζ	conductance	damping coefficient

A soliton in annular Josephson junction

Periodic boundary conditions

$$\varphi(0) = \varphi(L) + 2\pi n$$

$$\varphi_x(0) = \varphi_x(L)$$

n = 1

number of trapped flux quanta

Measurement of a soliton trapped in a ring

vortex velocity $v = 2\pi R \frac{V}{\Phi_0}$

Measurement of a single Josephson vortex at T=4.2K

Current-voltage characteristics of annular junction

Alexey Ustinov Superconductivity: Lecture 10 25

Multi-soliton dynamics in annular junction

A 1,2

Fluxon in annular junction

Example:

- 1 trapped vortex (n=1)
- + 1 vortex-antivortex

Alexey Ustinov Superconductivity: Lecture 10 26

Long junction geometries

$$(\varphi_x + \beta \varphi_{xt}) \Big|_{x=0} = \eta,$$

$$(\varphi_x + \beta \varphi_{xt}) \Big|_{x=\ell} = \eta,$$

where

$$\eta = \frac{2\pi\Lambda\lambda_{\rm J}\mu_0}{\Phi_0}H.$$

$$(\varphi_x + \beta \varphi_{xt}) \Big|_{x=0} = \eta + \kappa$$
$$(\varphi_x + \beta \varphi_{xt}) \Big|_{x=\ell} = \eta - \kappa$$

where

$$\kappa = \frac{I_{\rm B}}{2\lambda_{\rm J} j_{\rm c} W} \,.$$

SG Hamiltonian without perturbations

Equation $\varphi_{xx} - \varphi_{tt} = \sin \varphi$ can be attributed to a Hamiltonian system for (φ, φ_t)

$$\mathcal{H} \equiv \int_{-\infty}^{\infty} \left(\frac{1}{2} \varphi_x^2 + \frac{1}{2} \varphi_t^2 + 1 - \cos \varphi \right) dx .$$

As $\varphi_x \to 0$ for $|x| \to \infty$, we get:

$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} \left(\frac{1}{2}\varphi_x^2 + \frac{1}{2}\varphi_t^2 + 1 - \cos\varphi\right) \mathrm{d}x = \int_{-\infty}^{\infty} \left(\varphi_x \varphi_{xt} + \varphi_t \varphi_{tt} + \varphi_t \sin\varphi\right) \mathrm{d}x$$

$$= \left. \varphi_x \varphi_t \right|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \left(-\varphi_t \varphi_{xx} + \varphi_t \varphi_{tt} + \varphi_t \sin\varphi\right) \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} \varphi_t \left(-\varphi_{xx} + \varphi_{tt} + \sin\varphi\right) \mathrm{d}x = 0.$$

For the unperturbed sine-Gordon system, the energy is conserved.

SG equation with perturbations

Perturbed sine-Gordon equation
$$\varphi_{xx} - \varphi_{tt} = \sin \varphi + \underbrace{\alpha \varphi_t - \beta \varphi_{xxt} - \gamma}_{\text{perturbations}}.$$
 perturbations From
$$\int_{-\infty}^{\infty} \varphi_t (-\varphi_{xx} + \varphi_{tt} + \sin \varphi) \, \mathrm{d}x = 0 \quad \text{we get:}$$

$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = \int_{-\infty}^{\infty} (-\alpha \varphi_t^2 + \beta \varphi_{xxt} \varphi_t + \gamma \varphi_t) \, \mathrm{d}x$$

$$= \beta \varphi_{xt} \varphi_t \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} (-\alpha \varphi_t^2 - \beta \varphi_{xt} \varphi_{xt} + \gamma \varphi_t) \, \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} (-\alpha \varphi_t^2 - \beta \varphi_{xt}^2 + \gamma \varphi_t) \, \mathrm{d}x .$$
 energy energy dissipation input

Energy balance of a single soliton

$$\varphi_{\rm F}=4\arctan\left[\exp\frac{x-vt-x_0}{\sqrt{1-v^2}}
ight]\,,\quad {
m by\ inserting\ this\ into\ Hamiltonian\ we\ get}$$

the soliton energy $\mathcal{H}(\varphi_F) \equiv \mathcal{E}_F = \frac{8}{\sqrt{1-v^2}}$ as that of relativistic particle with

rest mass $m_{\rm F}=8$. Since α , β and γ are assumed to be small, we take as an approximate solution of the perturbed equation the soliton-type solution given above with a *time-dependent velocity* v.

$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t}\bigg|_{\varphi=\varphi_{\mathrm{F}}} = -8\alpha \, \frac{v^2}{(1-v^2)^{1/2}} - \frac{8}{3}\beta \, \frac{v^2}{(1-v^2)^{3/2}} - 2\pi\gamma \, .$$

Using the last formula of the previous slide we get:

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\alpha v(1 - v^2) - \frac{1}{3}\beta v - \frac{1}{4}\pi\gamma(1 - v^2)^{3/2}.$$

The power balance velocity: $\gamma = \frac{4}{\pi} \frac{|v_{\infty}|}{\sqrt{1-v_{\infty}^2}} \left| \alpha + \frac{\beta}{3(1-v_{\infty}^2)} \right|$

Comparison with numerical simulations

Dependence of the power balance soliton velocity on the bias current with $\alpha = 0.08$ and $\beta = 0.06$ (dashed line), and with $\alpha = 0.1$ and $\beta = 0$ (solid).

Open dots show the result of full numerical simulations with α = 0.1 and β = 0.