Electronics for Physicists

Analog Electronics

Chapter 0; Lecture 01

Frank Simon Institute for Data Processing and Electronics

Karlsruhe Institute of Technology

KIT, Winter 2023/24

24.10.2023

Preamble

Electronics for Physicists - WS23/24 Analog Chapter 0

Organisation

Lecture & Practical Course

- Date & Time: Tuesday (Analog), Thursday (Digital), 8:00 but swaps in several weeks
 - Currently planned deviations from this cycle: 26.10. Analog also Thursday this week
 21.11. / 23.11. Swap Digital (Tue) <-> Analog (Thu)
 29.11. No Analog - cancelled or digital?
 12.12. / 14.12. Swap Digital (Tue) <-> Analog (Thu)
- Practical course: "Exercises" for the lecture analog and digital electronics (and combined) experiments Wednesday afternoon, starting 14:00. First meeting: November 8. *Separate ILIAS registration required!*
- Exams: Analog and Digital can be taken as separate exams, or as one combined exam if you have taken both courses (the default) in this case with correspondingly larger credits
- ILIAS as "Repository" for slides, tool for communication
 - Lecture script (from Prof. Weber) available as background information

Analog and Digital Elektronics

Two parallel Pillars of the Lecture

• Readout chain for high energy physics as an example

Frank Simon (<u>frank.simon@kit.edu</u>)

Analog Elektronics

Overview

- Subdivided into Chapters often spanning across multiple lectures
- 1. Basics
- 2. Circuits with R, C, L with Alternating Currents
- 3. Diodes
- 4. Operational Amplifiers
- 5. Transistors Basics
- 6. 2-Transistor-Circuits
- 7. Field Effect Transistors
- 8. Additional Topics
 - Filters
 - Voltage Regulators
 - Noise

Digital Electronics

Overview

- Number systems
- Boolean algebra
- Basic logic modules
- From transistor to logic module (CMOS)
- Essential circuits (combinational logic)
- Minimization of circuits
- Memory (sequential logic)
- Finite state machines
- Programmable logic (main focus FPGA)
- Hardware description languages (main focus VHDL)
- Digital /analog- & analog/digital-converters (various methods)

L) is methods)

Who we are - and what we do

Institute for Data Processing and Electronics: Campus North, Geb. 242

Electronics for Physicists - WS23/24 Analog Chapter 0

Experiments - International Collaborations - Examples

KATRIN Karlsruhe

Pierre Auger Observatory Argentina

CBM at **FAIR GSI** Darmstadt

Belle II Japan

Electronics for Physicists - WS23/24 Analog Chapter 0

Innovation & Technology Transfer - Some Examples

UV-LED Module World-record in power density 484 W/cm²

Quench Detection System for high current leads and superconducting magnets

TT Project Kryo Sensor Prof. Dr. Steffen Grohmann

Electronics for Physicists - WS23/24 Analog Chapter 0

Sensolute GmbH Founded in 2006 Product: Micro vibration sensor

Over 25 years of cooperation with Pipetronix Licence fees > 6 M€

3D-USCT for multi-center study in China KIT Innovationspreis 2018 PD Nicole Ruiter

Local Highlights: KATRIN

HV precision regulation

Electronics for Physicists - WS23/24 Analog Chapter 0

Data management & IT infrastructure

Future project now taking shape: Quantum sensors (MMC) to dramatically improve neutrino mass sensitivity. Key roles of IPE

- Quantum sensor production & test
- Multi-channel readout system for quantum sensors - also relevant for qubits / quantum computing

Frank Simon (frank.simon@kit.edu)

Highlights at CERN

• CMS Experiment at LHC

Electronics for Physicists - WS23/24 Analog Chapter 0

- Silicon sensor R&D
- Pixel detector construction
- L1 Track Trigger
- High Granularity Calorimeter HGCAL

Frank Simon (<u>frank.simon@kit.edu</u>)

A broad Spectrum of Technology Development - Examples

Silicon sensors, packaging and interconnects

• Ultrasound CT for breast cancer diagnosis

Electronics for Physicists - WS23/24 Analog Chapter 0

• Production & readout of superconducting sensors and qbits

• Test systems for Li-Ion batteries for BEVs

A particular Focus: Data Acquisition

Beam diagnostics - also using AI to control accelerators.

Near future: Possible application in the SuperKEKB/Belle II beam abort system.

Electronics for Physicists - WS23/24 Analog Chapter 0

CMS Track Trigger

Supraleitende Sensoren für ECHo

A particular Focus: ASIC Laboratory

Monolithic sensors in LFA15 process

Electronics for Physicists - WS23/24 Analog Chapter 0

Now developing the sensor for the LHCb Phase IIb upgrade: Installation 2033

Frank Simon (<u>frank.simon@kit.edu</u>)

Developing Concepts for the Future

Detectors & DAQ for FCC at CERN and other Applications

• Highly granular 5D - Calorimetry for Higgs Factories

Re-thinking the readout concepts:

Do we need a trigger? Which processing speed, data bandwidth?

How to use the data? -> AI-based algorithms!

Electronics for Physicists - WS23/24 Analog Chapter 0

Frank Simon (<u>frank.simon@kit.edu</u>)

Data Processing and Electronics

Introduction

Electronics & Us: A few examples

Electronics for Physicists - WS23/24 Analog Chapter 0

Electronics in Everyday Life

• How many electronic devices do carry around with you right now?

Frank Simon (frank.simon@kit.edu)

Electronics in Basic Research

High-Energy Physics: Pushing the absolute Limits

Electronics for Physicists - WS23/24 Analog Chapter 0

Frank Simon (<u>frank.simon@kit.edu</u>)

Reading out the CMS HGCAL

A CMS Example

Electronics for Physicists - WS23/24 Analog Chapter 0

Reading out the CMS HGCAL

A CMS Example

 40 TB/s in perspective: internet traffic at DE-CIX (internet exchange point in Frankfurt):

How we handle this:

Serenity S1 DAQ board developed at IPE

124 25 Gb/s fiber links powerful FPGA for online processing

Traffic Frankfurt – 2 days

42 TPG Stage 1 Serenity S1 boards for the trigger stream

300 Serenity S1 boards total for HGCAL trigger & data

Electronics in Basic Research

Astroparticle Physics - Exotic Conditions

Electronics for Physicists - WS23/24 Analog Chapter 0

Frank Simon (<u>frank.simon@kit.edu</u>)

Electronics in Basic Research

Astroparticle Physics - Exotic Conditions

Electronics for Physicists - WS23/24 Analog Chapter 0

Next Lecture: Analog 02 - Chapter 01

Thursday, October 26 - same time, same place.

Electronics for Physicists

Analog Electronics

Chapter 0; Lecture 01

Frank Simon Institute for Data Processing and Electronics

Karlsruhe Institute of Technology

KIT, Winter 2023/24

24.10.2023

