Electronics for Physicists

Analog Electronics

Frank Simon **Institute for Data Processing and Electronics**

Karlsruhe Institute of Technology

KIT, Winter 2023/24

Chapter 1; Lecture 02

26.10.2023

Chapter 1 Basics

Part 1

- Charge, Current & Voltage
- Resistors
- Voltage- & Current Sources
- Capacitors

Overview

- 1. Basics
- 2. Circuits with R, C, L with Alternating Current
- 3. Diodes
- 4. Operational Amplifiers
- 5. Transistors Basics
- 6. 2-Transistor Circuits
- 7. Field Effect Eransistors
- 8. Additional Topics
 - Filters
 - Voltage Regulators
 - Noise

Electric Charge

Elektrische Ladung

- Electric charge: unit Coulomb [C]
 - 1 C = 6.241 x 10¹⁸ e⁻ (for most "practical" cases: A very "large" unit)
 - 1 fC = 10^{-15} C = ~ 6000 e⁻

Concrete example: Ionisation in particle detectors

Electronics for Physicists - WS23/24 Analog Chapter1

In Silicon: 3.6 eV / e⁻-hole pair; ~ 80 e⁻ per μ m for MIPs For 300 μ m ~ 4 fC

Strom

Current = moving charge: charge / time

- I: current in Ampere [A] = [C/s]
- Q: charge in C
- t: time in seconds [s]

Convention: current flow from higher (+)

to lower (-) potential.

For metallic conductors: flow of electrons, opposite to the conventional direction of current flow.

Frank Simon (<u>frank.simon@kit.edu</u>)

Institute for

Data Processing and Electronics

Electronics for Physicists - WS23/24 Analog Chapter1

Frank Simon (<u>frank.simon@kit.edu</u>)

						i			_			-	1	1	2					1	
				-		đ	1	ļ	5	1		2			ž.						
	J	2		1		1				7					r						
						÷									÷						
						Ξ									Ξ						
						Ξ									Ξ						
1	i					Ξ									Ē.						
,	•					÷	-			-	-		-		λ.						
,	•			٠		1	-				-			• •	Ζ.			4			
1	•					÷	-			-	-	*	-		-	1	c	۶			٧
,	•					÷	-				đ	P			ς.						
						9		ł	ç	5					Ξ.						
						Ξ									1						
1	ł	+	+		+	Ξ	-	+	-	-	-	-	-	• •	Ζ.				+		+
						1									1						
ì						ï	-				-				÷.						
						1									1						
						1									2			ŝ			
1	í			-	à	5	-	ļ		2	2	٢				1	1				
į	į			Ľ,	1	1					1				1						
		1	1	1	1	1									1						
						1									1						
						1									1						
,						t							é,		2.						
,	i	1		1		ţ								į,	٤.				i		
,	•				•	٠	-	•	-	-	-	•		• •	e-						
,	•					٠						*		• •	e-						
	i					1		5		i,	÷				٤.	5	į,	5	į,		
ļ	í	í	í	1	į,	í	6	í	í.	í	1	į,			2.	1	í,	į,	í	í	
						t															
,	•					٠	-				-				ć.						
						•	0								•						
						ż	1				-				ż.						
						÷									÷						
						÷									÷						
,						÷									ē.						
						ŝ									÷						
						÷									÷						
						÷									÷						
						ï									÷.						
1						÷									÷.						
,	•					÷	-	-		-	-										
,	•					٠								• •	ç.					•	
•	•	•	•	•	•		-	•		-	-	•	•	• •	ć.	•	•	•	•	•	•
	•	•	•	•	•		-	•		-		•	•	• •	ć.	•	•	•	•	•	•
						÷									έ.						
1	1	1	1	1	1	i	1	1	1	1	7	1	1	1	÷	1	1	1	1	1	1
	•	•	•							•		•	•	• •	ć.	•	•	•		•	•
						į									i.						
,	i					í								, i	1				÷		
		1	1	1	1	i	Ĩ	1	9		1					1	1	ſ	1	6	1
						i									2						
	i					ĩ						÷			ē.				ŝ		
						ĩ									1						
						ĩ									Ē.						
						ĩ									ŝ.						
						ĩ									ŝ.						
				ŝ	5	ĩ								į,	ĩ.	1					
,		1	1	í	í,	ĩ		í	1	1	1	1			1	í	í	í	1	í	1
1	i			1	1	1						i									
		-														2	2	1			
-		-	:	;		;			٠			٠								٠	٠
				:			:	:	:		:	:			1	:	;	:	1	:	:

and Electronics

Voltage Spannung

• Voltage, oder potential difference: Energy W that has to be invested to move an electric charge q in a field E. Also given by the electric field integrated over the distance of movement.

$$\frac{W}{q} = U = \int \vec{E} \, d\vec{s}$$

- U: Voltage in Volt [V]
- E: electric field strength [V/m]
- s: distance [m]

In typical applications: Electric fields are relevant for example in detectors, electric circuits normally only the voltage is of interest.

Resistors, Ohm's Law

The connection of current and voltage

$$U = RI$$

Widerstand

R: resistance in Ohm [$\Omega = V/A$]

Often used as well: *Conductance* G = 1/R

- What Ohm's law means:
 - Voltage results in current flow
 - Current flow through a resistor results in a voltage drop across the resistor

Power: Current and Voltage

$$P = UI = \frac{U^2}{R} = I^2 R$$

P: power in Watts [W = VA]

- In our daily lives: Power as a cost factor: "energy consumption" P * t -> kWh / MWh / TWh...
- For detectors in high energy physics: power requires cooling!

consumption" P * t -> kWh / MWh / TWh... res cooling!

Power in Detectors

Example: Power loss in cables

 Low voltage supply cables of the ATLAS SCT detectors 4 Ω cable resistance for 100 m long cables; 1 A for each of the 4000 modules $P = 4 \Omega x 1 A^2 x 4000 = 16 kW =>$ Pure power loss in the cables: Heating of the cables!

Reducing Power

Example: Frontend ASICs

Electronics for Physicists - WS23/24 Analog Chapter1

- The SVX2 ASIC was central for the discovery of the Top quark at Fermilab: Silicon strip, D0 Experiment; Further development as SVX3, 4 also for CDF
- Smaller feature size (transistor size) make ASICs smaller
- Additional functionality makes them bigger
- Smaller feature size typically means lower voltage, and with that also smaller charges: Lower power! (This simple logic does not apply for
 - technologies below 65 nm)

Specific Resistance

Spezifischer Widerstand

• A material property:

$$R = \rho \frac{l}{A}$$

- R: Resistance $[\Omega]$ A: (Cross section-) Area of resistor [m²] ρ : specific resistance [Ω m] I: Length of resistor [m]

- The resistance increases with length, reduces with larger cross section (also applies) for other components, such as field effect transistors (FETs))
- \Rightarrow The material of the resistor determines the properties also metals have a range of different values

material	<i>p</i> [10 ⁻ ⁸ Ω m]	Ζ
silver	1,59	47
copper	1,68	29
gold	2,21	79
aluminium	2,65	13

Resistance of different metals at 20° C

Specific Resistance: Consequences

High energy physics view

 (Power) Cables are a significant fraction of the (unwanted) material of particle detectors, in particular in tracking systems in collider experiments: The choice of the right material is of high importance.

material	<i>p</i> [10 ⁻ ⁸ Ω m]	Ζ
silver	1,59	47
copper	1,68	29
gold	2,21	79
aluminium	2,65	13

Multiple scattering determined by radiation length X_0 : ~ A/Z² in g/cm², also depends on density: ~ 1/p (NB: Large is good, meansL small Z, small p) Copper: 14.4 mm; Aluminum: 88.9 mm => Despite higher specific resistance much less X_0 when using AI.

Kirchhoff's Circuit Laws

Kirchhoffsche Regeln

 Follow from basic conservation laws: Charge, energy

Kirchhoff's Current Law KCL

Knotenregel / 1. Kirchhoffsches Gesetz

Charge conservation: Current entering the node = current leaving the node

Electronics for Physicists - WS23/24 Analog Chapter1

Energy conservation:

The sum of all voltage drops around a loop ("Masche") is 0. [Applies only without induction due to time-dependent magnetic fields, KVL also follows from the induction law]

Resistor Circuits

Parallel, Series

• Resistors in series ("*Reihenschaltung*")

Same current through all resistors in series.

• Parallel resistors ("*Parallelschaltung*")

Same voltage drop across all parallel resistors.

Electronics for Physicists - WS23/24 Analog Chapter1

R

$\frac{1}{\frac{1}{R_1}} = \frac{R_1 R_2}{R_1 + R_2}$ $= R_1 \| R_2$ R =

Frank Simon (<u>frank.simon@kit.edu</u>)

Voltage Sources

Spannungsquellen

- Two types of power supplies ("Stromversorgungen"): voltage sources, current sources
- Ideal voltage source: Constant voltage, independent of load current

R_i: internal resistor R_L: load resistor

lab power supply: ~10⁻⁵ Ω car battery: ~10⁻² Ω (BEV battery cell: ~10⁻³ Ω) Mono-cell: 0.1 - 1 Ω

- constant current

Current Sources

Stromquellen

- Two types of power supplies ("Stromversorgungen"): voltage sources, current sources
- Ideal current source: Constant current independent of voltage at the load

Electronics for Physicists - WS23/24 Analog Chapter1

Current sources are at their best in short-circuit:

Frank Simon (<u>frank.simon@kit.edu</u>)

Current Sources

Nothing exotic

• Current sources are quite common (even though we mostly "see" voltage sources in everyday life): Central elements in integrated circuits / ASICs

Example ABCN ATLAS silicon detector readout ASIC prototype - different current sources in operation

Electronics for Physicists - WS23/24 Analog Chapter1

Frank Simon (frank.simon@kit.edu)

Voltage Divider

Spannungsteiler

Voltage dividers are some of the most common circuits

Assumption: R₁ adnd R₂ are relatively large, load currents are small

Kirchhoff's Voltage Law (KVL):

 $U_{in} = U_1 + U_2 = (R_1 + R_2)I$ and $U_{out} = R_2I$

 $U_{out} = U_{in} \, rac{R_2}{R_1 + R_2}$

Kondensatoren

• Symbol:

C: Capacity in Farad [F = As/V]Q: Charge [C = As]U: Voltage [V]

Current and voltage with capacitors:

$$I = \frac{dQ}{dt} = C \, \frac{dU}{dt}$$

 $\epsilon_0 \, \epsilon_r \, A$

d

Stored energy: $E = rac{1}{2} rac{Q^2}{C} = rac{1}{2} C U^2$

[F/m]

Example: Capacity of Silicon Detectors

Silicon Strip Detectors

With full depletion, and neglecting neighboring strips and other effects: $\sim 0.56 \text{ pF}$

When considering all effects (neighboring strips dominate!): 1-2 pF/cm x strip length

Capacity of one strip: $A = 80 \ \mu m \ge 20 \ mm$ $d = 300 \ \mu m$ $\epsilon_0 = 8.9 \ge 10^{-12} \ F/m$ and $\epsilon_R = 11.8$ (Silizium)

Capacitors: Circuits

Parallel, Series

Electronics for Physicists - WS23/24 Analog Chapter1

Frank Simon (<u>frank.simon@kit.edu</u>)

Overview: Circuits with passive Components

Resistor, Capacitor

	Series	Parallel
Resistor	$R=R_1+R_2$ increases	$R = rac{R_1 R_2}{R_1 + R_2}$ decreases
Capacitor	$C = rac{C_1 C_2}{C_1 + C_2}$ decreases	$C = C_1 + C_2$ increases

Electronics for Physicists - WS23/24 Analog Chapter1

Data Processing and Electronics

Discharging a Capacitor

Entladen

Solving the differential equation

$$U_C(t) = U_0 \ e^{-\frac{t}{RC}}$$

Exponential decrease with time constant

$$\tau = RC$$

Electronics for Physicists - WS23/24 Analog Chapter1

- For t > 0: Disconnecting the voltage source. Discharging the capacitor via R, starting from $U_C = U_0$
- Kirchhoff's Current Law:

Charging a Capacitor

with a Voltage Source

• Charging via resistor

Large capacitor: longer charging time Large resistor: longer charging time

Starting point (t = 0): $U_C = 0$

"charging current": $I = U_R/R = (U_{in} - U_C)/R$

 U_C depend on capacitor charge: $U_C = Q_C/C$, with that depending on the integral of the current I from t=0:

$$U_C = U_{in}(1 - e^{-\frac{t}{RC}})$$

$\tau = 1\mathrm{s}$	
$3\mathrm{s}$	
$5\mathrm{s}$	
	1
	•
	ļ
24	-

Charging a Capacitor

with a Current Source

• In contrast to the voltage source: charging current stays constant!

Electronics for Physicists - WS23/24 Analog Chapter1

$$\frac{C}{2}$$
 \Leftrightarrow $U_C = \frac{1}{C} \int_0^T I \, dt = \frac{IT}{C}$

Example:1 s bei C = 1 μ F und I = 1 mA results in U_C = 1 kV

Comparison of charging behavior with voltage and current source

Low Pass / Integrator

Tiefpass / Integrator

• Behavior for time-dependent voltages

First approximation: U_C is small

$$U_C = U_{aus} = \frac{1}{RC} \int U_{ein} \, dt$$

Integrator circuit!

High Pass / Differentiator

Hochpass / Differenzierer

$$U_{aus} = R C \, \frac{dU_{ein}}{dt}$$

Electronics for Physicists - WS23/24 Analog Chapter1

Next Lecture: Analog 03 - Chapter 01

Tuesday, October 31 - same time, same place.

Electronics for Physicists

Analog Electronics

Frank Simon **Institute for Data Processing and Electronics**

Karlsruhe Institute of Technology

26.10.2023

KIT, Winter 2023/24

Chapter 1; Lecture 02

