Electronics for Physicists

Analog Electronics

Frank Simon **Institute for Data Processing and Electronics**

Karlsruhe Institute of Technology

Chapter 1; Lecture 03

31.10.2023

KIT, Winter 2023/24

Chapter 1 Basics

Part 2

- Simple RC Filters
- Inductors
- RC and RL Circuits
- Linear Networks

Overview

- 1. Basics
- 2. Circuits with R, C, L with Alternating Current
- 3. Diodes
- 4. Operational Amplifiers
- 5. Transistors Basics
- 6. 2-Transistor Circuits
- 7. Field Effect Eransistors
- 8. Additional Topics
 - Filters
 - Voltage Regulators
 - Noise

Low Pass / Integrator

Tiefpass / Integrator

• Behavior for time-dependent voltages

First approximation: U_C is small

$$U_C = U_{aus} = \frac{1}{RC} \int U_{ein} \, dt$$

Integrator circuit!

Frank Simon (<u>frank.simon@kit.edu</u>)

High Pass / Differentiator

Hochpass / Differenzierer

$$U_{aus} = R C \, \frac{dU_{ein}}{dt}$$

Electronics for Physicists - WS23/24 Analog Chapter1

Inductors

Spulen

• Symbol:

"classic" inductor: Solenoid - "coil"

$$\begin{split} & \underset{L}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}{\underset{\mu_{\mathrm{r}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}{\underset{\mu_{\mathrm{r}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}{\underset{\mu_{\mathrm{r}}}}}}}}}}}}}}}}}}}}}}}}}}$$

Inductivity of a coil with finite length

Electronics for Physicists - WS23/24 Analog Chapter1

L: Inductance in Henry [H = Vs/A]

Induktivität

$\mu_0 = 4 \pi \, 10^{-7} \, [\frac{\mathrm{H}}{\mathrm{m}}] = 12,566 \dots \, 10^{-7} \, [\frac{\mathrm{H}}{\mathrm{m}}]$

- Number of windings
- cross section area of the coil [m²]
- diameter [m]
- length [m]
- permeability of the core (1 für Luft/Vakuum;
- ~ 2000+ for Fe, up to ~ 10^5 for specialized alloys)

Magnetic Field of a Coil

Magnetfeld einer Spule

$$B = \mu_0 \frac{N}{l}I$$

B: Magnetic field [T] N: Number of windings I: Length of the coil

• For applications in electronics normally not relevant - but interesting, and helpful for in-depth understanding.

Frank Simon (<u>frank.simon@kit.edu</u>)

Very large Coils *An Example*

• ATLAS main magnet: Air core toroid

Electronics for Physicists - WS23/24 Analog Chapter1

Frank Simon (<u>frank.simon@kit.edu</u>)

Overview: Behavior of passive Components

Resistor, Capacitor, Inductor

	Voltage	Current
Resistor	U = RI	$I = \frac{U}{R} = GU$
Capacitor	$U = \frac{1}{C} \int I dt$	$I = C \frac{dU}{dt}$
Inductor	$U = L \frac{dI}{dt}$	$I = \frac{1}{L} \int U dt$

Electronics for Physicists - WS23/24 Analog Chapter1

Inductor Circuits

Series, Parallel

Inductors in series

Same current through all inductors: $I_{L1} = I_{L2}$

Inductors in parallel

The same voltage $U_{L1} = U_{L2}$ (but the current is split over all)

Electronics for Physicists - WS23/24 Analog Chapter1

$$L = L_1 + L_2$$

ge across all inductors
$$\displaystyle rac{1}{L} = rac{1}{L_1} + rac{1}{L_2}$$

$$L=rac{L_1\,L_2}{L_1+L_2}$$

Overview: Circuits with passive Components

Resistor, Capacitor, Inductor

	Se
Resistor	R = F
Capacitor	$C = \frac{C_1 C}{C_1 + C_1}$
Inductor	$L = L_1$

Electronics for Physicists - WS23/24 Analog Chapter1

Inductance

Examples & Orders of Magnitude

• Depending on the application a very wide spectrum of numerical values - in general: H (Henry) is a "large" unit

Example 1: The CMS Solenoid

- B = 3.8 T as standard, design for 4T
- Stored energy: 2.3 GJ (at 3.8 T)
- Current: 18.2 kA (at 3.8 T)
- Inductance L: 14 H
- Length: 13 m; Diameter 6 m

Example 2: A single wire bond

- Length: a few mm
- Inductance L: a few nH

Electronics for Physicists - WS23/24 Analog Chapter1

Discharging an Inductor

Entladen

• Discharging of an inductor through a resistor

Initial conditions at t=0: $I_{L} = I_{0}$

Solving the differential equation

$$I = I_0 e^{-\frac{t}{L/R}} = I_0 e^{-\frac{t}{\tau}} \qquad \tau = \frac{L}{R}$$

for t > 0: Exponential decay of the current

Comparing to a capacitor: Exponential decay of the voltage

Magnetizing an Inductor

Magnetisieren

=1s	
3 s	
$5\mathrm{s}$	
	5

Time-Dependent Voltage

Behavior for a sequence of rectangular pulses

• Comparable to the behavior of a capacitor (but with swapped integration / differentiation)

Electronics for Physicists - WS23/24 Analog Chapter1

To discuss: Can a high pass be constructed as well?

Overview: Time behavior of passive Components

Resistor, Capacitor, Inductor

	Stored Energy	t = 0 (when switching on)	t -> ∞ (in equilibrium)
Resistor		time independent	
Capacitor	electric charge Q: -> voltage	$Q = 0; U = 0: -> short circuit$ $Q \neq 0; U \neq 0:$ $-> voltage source$	Q konstant dQ/dt = I = 0: -> <i>open circuit</i>
Inductor magnetic field B: -> current	-> voltage source B = 0; I = 0: -> open circuit	B konstant	
	-> current	B ≠ 0; I ≠ 0: -> current source	dl/dt = U = 0: -> <i>short circuit</i>

Electronics for Physicists - WS23/24 Analog Chapter1

RC and RL Circuits

A Comparison

High and Low Pass

To follow in detail at home

 Building on slide 43, analogous to slides 30, 31: Try to follow the math

Electronics for Physicists - WS23/24 Analog Chapter1

Low pass / integrator

High pass / differentiator

Frank Simon (<u>frank.simon@kit.edu</u>)

Linear Networks

Introduction

 Circuits with resistors, capacitors, inductors and ar limit to complexity!

• Circuits with resistors, capacitors, inductors and an arbitrary number of current and voltage sources: No

Frank Simon (<u>frank.simon@kit.edu</u>)

Thévenin Theorem

also known as: Helmholtz Theorem

- series:
- Answers the following question: (NB: the power consumption may not be predicted correctly!)

=> Thévenin equivalent, with U_{Th} and R_{Th}

Source: Saure, CC-BY-SA-3.0; wikimedia commons

Electronics for Physicists - WS23/24 Analog Chapter1

• Every linear network can be described by one ideale voltage source U_{Th} and one (internal) resistance R_{Th} in

What is the voltage across and the current through a load resistor connected between any 2 nodes of the net?

Frank Simon (<u>frank.simon@kit.edu</u>)

Example: Voltage Divider

Determining the Thévenin Equivalent

- 1. U_{Th} corresponds to the output voltage of the divider for the case of no load ($R_L = \infty$)
- 2. \mathbf{R}_{Th} is determined for the case where all voltage sources are replaced by a short circuit and all current sources are replaced with an open circuit.

• How are UTh and RTh calculated?

$$U_{Th} = \frac{UR_2}{R_1 + R_2}$$

$$R_{Th} = \frac{R_1 R_2}{R_1 + R_2}$$

Frank Simon (<u>frank.simon@kit.edu</u>)

Northon's Theorem

Northon Theorem

• Every linear network can be described by an ideal current source I_N and a parallel internal resistor R_N :

Source: Saure, CC-BY-SA-3.0; wikimedia commons

=> Northon Equivalent, with I_{No} and R_{No}

Institute for Data Processing and Electronics

Frank Simon (<u>frank.simon@kit.edu</u>)

Example: Voltage Divider

Determining the Northon Equivalent

- 1. INO CORRESPONDES TO THE OUTPUT CURRENT OF THE VOLTAGE DIVIDER for a short circuit $(R_{L} = 0)$.
- 2. \mathbf{R}_{No} is calculated by replacing all voltage sources by a short circuit and all current sources by an open circuit.

• Same procedure as for the Thévenin equivalent

$$R_{No} = \frac{R_1 R_2}{R_1 + R_2}$$

Thévenin and Northon

Conversions between the two schemes

• A net can by represented both by a Thévenin and a Northon equivalent

Food for thought:

Seen from the outside both options are identical - where are the differences?

Source: Saure, CC-BY-SA-3.0; wikimedia commons

• Conversion: $R_{No} = R_{Th}$ $I_{No} = U_{Th}/R_{No}$

Food for Thought

Extension of the Voltage Divider

• Slight increase in complexity: Additional resistor R₃. What happens to U_{Th}, R_{Th}?

For U_{Th}: Without load this is identical to the "simple" voltage divider!

 $R_{Th} = R$ For R_{Th} : In addition R_3 in series:

Electronics for Physicists - WS23/24 Analog Chapter1

$$R_1 \quad R_2 + R_3 = \frac{R_1 R_2}{R_1 + R_2} + R_3$$

Frank Simon (<u>frank.simon@kit.edu</u>)

$$U_{Th} = \frac{UR_2}{R_1 + R_2}$$

Analyzing Linear Networks

The Superposition Principle I

Electronics for Physicists - WS23/24 Analog Chapter1

Circuit with two voltage sources and 3 resistors. What is the load current through R_L?

A superposition of two circuits across R_L. As usual Kirchhoff's laws are very helpful: $I_{L} = I_{L1} + I_{L2} => U_{L} = U_{L1} + U_{L2}$

Analyzing Linear Networks

The Superposition Principle II

(here $R_I = 0$) and the resulting partial circuits are analyzed.

$$U_{L_{1}} = \frac{U_{1}R_{B}}{R_{1} + R_{B}} \qquad R_{B} = \frac{R_{L}R_{2}}{R_{L} + R_{2}}$$
$$I_{L_{1}} = \frac{U_{L_{1}}}{R_{L}}$$

 $I_L = I_{L_1} + I_{L_2} = \frac{1}{R_1}$

resulting in:

Electronics for Physicists - WS23/24 Analog Chapter1

• To fully analyze the net, all but one current or voltage sources are replaced by the internal resistance in turn

and
$$U_{L_2} = \frac{U_2 R_A}{R_1 + R_A}$$
 $R_A = \frac{R_L R_1}{R_L + R_1}$
and $I_{L_2} = \frac{U_{L_2}}{R_L}$

$$\frac{U_1 R_2 + U_2 R_1}{R_2 + R_L (R_1 + R_2)}$$

Frank Simon (<u>frank.simon@kit.edu</u>)

Solving Linear Networks

A system of linear equations

Sum of currents in node 3 = 0:

 U_{31} R_1

Sum of voltages over loops M 1 & 2 = 0:

3 unknown voltages: U₃₀, U₃₁, U₃₂; 3 independent equations: That can be solved!

Electronics for Physicists - WS23/24 Analog Chapter1

• The question: What is U₃₀, and what is the current through R_L?

$$I_L = \frac{U_{30}}{R_L}$$

• Ansatz: Rigorous use of Kirchhoff's laws for all relevant nodes and loops.

$$+\frac{U_{32}}{R_2} + \frac{U_{30}}{R_L} = 0$$

 U_{20}

$$- U_{31} + U_{30} - U_{10} = 0 \quad (M_1)$$
$$- U_{30} + U_{32} + U_{20} = 0 \quad (M_2)$$

Solving Linear Networks

Matrix Notation

• A compact way of writing and solving the system of equations: As a matrix

notation:

 R_i

Can be solved using Cramer's rule:

0 U_{10} U_{20}

$$U_{30} = \det \begin{pmatrix} 0 & G_1 & G_2 \\ U_1 & -1 & 0 \\ U_2 & 0 & -1 \end{pmatrix} \cdot \frac{1}{\det \begin{pmatrix} G_L & G_1 & G_1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}}$$

Next Lectures: Digital - Thursday, November 2 Analog 04 - Chapter 02 - Tuesday, November 7

Electronics for Physicists

Karlsruhe Institute of Technology

KIT, Winter 2023/24

Analog Electronics

Frank Simon **Institute for Data Processing and Electronics**

31.10.2023

