Electronics for Physicists

Analog Electronics

Chapter 5; Lecture 09

Frank Simon **Institute for Data Processing and Electronics**

Karlsruhe Institute of Technology

KIT, Winter 2023/24

19.12.2023

IV Curves of Transistors

Transistor-Kennlinien

• With 3 terminals there is a wide range of possibilities: I_C vs U_{BE} , I_B vs U_{BE} , I_C vs U_{CE} , ... Describe the behavior of the component: All that is needed for circuit design.

Electronics for Physicists - WS23/24 Analog Chapter 5

In general: watch power limit:

 $I_{C} * U_{CE} < P_{max}$

4

Minimal U_{CE} (~ 0.2V) has to be exceeded so that collector-emitter current I_C flows: "active region Below: saturation region - not enough electrons from base to collector.

In active region: Weak dependence of I_C on U_{CE} : large differential resistor R_{CE}

Frank Simon (frank.simon@kit.edu)

IV Curves of Transistors

Transistor-Kennlinien

• With 3 terminals there is a wide range of possibilities: I_C vs U_{BE} , I_B vs U_{BE} , I_C vs U_{CE} , ... Describe the behavior of the component: All that is needed for circuit design.

I_C vs U_{BE}

Electronics for Physicists - WS23/24 Analog Chapter 5

U_{BE} determines the collector current.

Exponential dependence, just as for a diode:

Transistor as active component with amplification

$$I_C = \beta I_S \left(e^{\frac{U_{BE}}{U_T}} - 1 \right)$$

 $I_{\rm S}$, $U_{\rm T}$ as for a diode (reverse bias saturation current, voltage due to thermal excitation durch therm. Anregung)

β: current amplification

Current Amplification

Stromverstärkung

$$= \frac{dI_C}{dI_B} |_{U_{CE}=const}$$

- $I_C \sim \beta I_B$ over a wide range in current
- typical values: $\beta \sim 100$ [(significantly) larger values also possible]
- => BJT as current-driven current source.

Transistor Equations

Behavior of Transistors

• Normally most relevant: Dependence of base current I_B and collector current I_C on the voltages UBE, UCE

$$dI_{C} (U_{BE}, U_{CE}) = \frac{\partial I_{C}}{\partial U_{BE}} dU_{BE} + \frac{\partial I_{C}}{\partial U_{CE}} dU_{CE} = S \, dU_{BE} + \frac{1}{R_{CE}} \, dU_{CE}$$
$$dI_{B} (U_{BE}, U_{CE}) = \frac{\partial I_{B}}{\partial U_{BE}} \, dU_{BE} + \frac{\partial I_{B}}{\partial U_{CE}} \, dU_{CE} \approx \frac{1}{R_{BE}} \, dU_{BE}$$
with:
$$R_{BE} = \frac{\partial U_{BE}}{\partial I_{B}}$$
differential base-emitter resistance
$$R_{CE} = \frac{\partial U_{CE}}{\partial I_{C}}$$
differential collector-emitter resistance
$$S = \frac{\partial I_{C}}{\partial U_{BE}}$$
transconductance ("Steilheit")

Electronics for Physicists - WS23/24 Analog Chapter 5

(2. term neglegted)

Frank Simon (<u>frank.simon@kit.edu</u>)

Simple Transistor Model

Based on Diode Behavior

Considering the base-emitter diode

$$I_{B} = I_{S} \left[e^{\frac{U_{BE}}{U_{T}}} - 1 \right] \approx I_{S} e^{\frac{U_{BE}}{U_{T}}}$$
in addition: $U_{T} = \frac{kT}{q_{e}}$ (see Chapter 3) and
results in: $R_{BE} = \frac{\partial U_{BE}}{\partial I_{B}} = \frac{kT}{q_{e} I_{B}}$
 $S = \frac{\partial I_{C}}{\partial U_{BE}} = I_{C} \frac{q_{e}}{kT} = \frac{I_{C}}{U_{T}}$
with kT/q_e = 25 mV at room temperature: $S[\frac{1}{\Omega}]$

=> Transconductance independent of transistor details, depends on I_C, T

Connection of transconductance and current amplification: $S = \frac{\partial I_C}{\partial U_{BE}} = \beta \frac{\partial I_B}{\partial U_{BE}} = \frac{\beta}{R_{BE}}$ und $R_{BE} = \frac{R}{q_e I}$ R_{BE}

Shockley equation

$$I_C = \beta I_B$$
 Amplification of base current in collection (see S 15)

 $= 40 I_C[A]$

$$\frac{T}{I_B} = \frac{U_T}{I_B}$$

Institute for

Data Processing and Electronics

Early Effect, Early Voltage

Early Effekt, Early Spannung

- Ideal current source: $I_{\rm C}$ in actuve region independent of $U_{\rm CE}$, only depends on $I_{\rm B}$
- In reality: Space charge region increases with increasing voltage, which reduces the thickness of the base: Increase if amplification β -Slope of I_C-U_{CE} curve -> *Early Effect*

Slope of IV curve in active region: $1/R_{CE}$, with $\frac{R_{CE}}{\partial I_C} = \frac{\partial U_{CE}}{\partial I_C}$ depends on $I_{\rm B}$ - steeper slope for larger $I_{\rm B}$

Extrapolated IV curves meet all meet in one point: UEA Early Voltag

with that:
$$R_{CE} = \frac{U_{EA}}{I_{C0}}$$

Typical values: 15 - 150 V

 R_{CE} relatively large, ~ 100 k Ω

Electronics for Physicists - WS23/24 Analog Chapter 5

Electronics for Physicists - WS23/24 Analog Chapter 5

In: Chapter 5: Transistor Basics

Electronics for Physicists - WS23/24 Analog Chapter 5

Transistors as Part of a Circuit

Concepts

• Transistors as current- or voltage-driven current source: $I_{\rm C}$ depending on $I_{\rm B}$ (or $U_{\rm B}$)

As current drain / voltage amplifier

The transistor current results in a voltage drop: $R_C I_C$

With that: $dU_{aus} = -R_C I_C$

Circuit behaves as inverting voltage amplifier.

Common Emitter Amplifier

supply voltage, and is neither input nor output.

Electronics for Physicists - WS23/24 Analog Chapter 5

• The "naming scheme": The basic circuits are named after the terminal that is connected to ground or to the

Components: Resistor (protection) R_V on input Collector resistor R_C

Inverting voltage amplifier Also: (moderate) current amplification

Frank Simon (<u>frank.simon@kit.edu</u>)

Common Collector Amplifier

supply voltage, and is neither input nor output.

Electronics for Physicists - WS23/24 Analog Chapter 5

• The "naming scheme": The basic circuits are named after the terminal that is connected to ground or to the

Components: Resistor (protection) R_V on input Emitter resistor R_F

Large current amplification (voltage buffer) No voltage amplification (< 1)

in practice the most common circuit

Common Base Amplifier

 The "naming scheme": The basic circuits are name supply voltage, and is neither input nor output.

Electronics for Physicists - WS23/24 Analog Chapter 5

• The "naming scheme": The basic circuits are named after the terminal that is connected to ground or to the

Components: Resistor (protection) R_V on base Resistor R_C on collector

• U_{aus}

Voltage amplification No current amplification

in practice the rarest circuit.

Frank Simon (frank.simon@kit.edu)

The Common Emitter

Understanding the Circuit

 \Rightarrow High voltage gain with large R_C

 \Rightarrow High transconductance S = high gain: S = 40 I_C / V (S 17)

Circuit Analysis

Small Signals

The recipe:

- Voltage and current sources are replaced with their internal resistance:
 - Current source: open circuit (infinite resistance)
 - Voltage source: short circuit (resistance 0)
- Non-linear components are replaced with their differential impedance at the working point
- Transistors are replaced with current- or voltage-driven current sources

• Analyzing circuits with non-linear components can be difficult - a solution for limited signal ranges is the small-signal equivalent circuit ("Kleinsignal-Ersatzschaltbild"): Considering a small range of the physically possible signals - typically with small perturbations around a stable condition - for example a DC current.

Common Emitter

Small-Signal Equivalent Circuit

Electronics for Physicists - WS23/24 Analog Chapter 5

Common Emitter - Equivalen Circuit

An Example

Resulting in:

and $R_{BE} = rac{kT}{q_e I_B}$ $R_{ein} = R_V + R_{BE}$ Output impedance $R_{aus} = R_C \parallel R_{CE} \approx R_C =$ $U_{aus} = -\beta I_B R_C \parallel R_{CE} \approx -\beta I_B R_C$ $=\frac{dU_{aus}}{dU_{ein}}=-$ Gain of the circuit:

Electronics for Physicists - WS23/24 Analog Chapter 5

Typical values

$$\beta = 100, I_C = 1 \text{ mA und } R_{CE} = 100 \text{ k}\Omega$$

 $R_C = 5 \text{ k}\Omega$

$$\frac{1}{3} = \frac{25}{10} \frac{\text{mV}}{\mu \text{A}} = 2.5 \text{ k}\Omega \qquad (\text{see S 17})$$

$$= 5 \text{ k}\Omega$$
and
$$U_{ein} = I_B \left(R_V + R_{BE}\right) \approx I_B R_{BE}$$

$$\frac{\beta R_C}{R_V + R_{BE}} \sim -200$$

Common Collector

Basic Functionality

Electronics for Physicists - WS23/24 Analog Chapter 5

• Behavior:

- $U_{ein} U_{aus} = U_B U_E = U_{BE} \approx 0,7\,\mathrm{V}$
- resulting in: $dU_{ein} = dU_{aus} => voltage gain = 1$
- The output voltage "follows" the input voltage. Thus also known as: "*emitter follower*".
- What's the point?
- High current gain:
- $I_C = \beta I_B$, and $I_E = (\beta + 1)I_B$

Equivalent Circuits - Common Collector

Large and small Signal Analysis

• Transformation into small-signal analysis: absorbs the "diode drop" - for the analysis of small changes

• In large signal analysis: External and internal voltage sourced not yet replaced (includes the base-emitter diode)

Frank Simon (<u>frank.simon@kit.edu</u>)

and Electronics

Understanding the Common Collector

Input Impedance

 $= R_{\rm BE} \cdot dI_{\rm ein} + (\beta + 1) dI_{\rm ein} \cdot R_{\rm E} || R_{\rm CE}$ $\mathrm{d}U_{\mathrm{ein}}$

$$Z_{\text{ein}} = \frac{\mathrm{d}U_{\text{ein}}}{\mathrm{d}I_{\text{ein}}} = R_{\mathrm{BE}} + (\beta + 1) R_{\mathrm{E}}$$

 \Rightarrow High input impedance (Typical values for R_E 100 Ω - 1 k Ω) (For high load impedance - For small values: Input impedance depends on load!)

Input impedance: Effect of a small input current on the input voltage U_{aus} $Z_{ein} = \frac{dU_{ein}}{dI_{oin}}$

(Input current results in amplified emitter current)

 $(\beta + 1) R_{\rm E}$ (Neglecting R_{CE} relative to R_E) \approx

Frank Simon (<u>frank.simon@kit.edu</u>)

Understanding the Common Collector

Output Impendance

results in:
$$dI_{aus} = \frac{\beta + 1}{R_{BE}} dU_{aus} + \frac{dU_{aus}}{R_{CE}} a$$

Low output impedance impedance transmission.

Electronics for Physicists - WS23/24 Analog Chapter 5

-o Uaus	Output impedance: Effect of a change in output voltage on output current for constant U _{ein} $Z_{aus} = \frac{dU_{aus}}{dI_{aus}}$
$dI_{\rm B} =$	$\frac{dU_{\rm BE}}{R_{\rm BE}} = -\frac{dU_{\rm aus}}{R_{\rm BE}}$
nd	$Z_{aus} = \frac{dU_{aus}}{dI_{aus}} = \frac{R_{BE}}{\beta + 1} R_{CE} R_E \approx$

Together with high input impedance: Well suited as impedance converter: Little impact on input signal, low-

Common Base

Basic Functionality

 U_{CC}

 R_V

 U_{ein} o

 R_C

In general: similar to common emitter:

$$\frac{V_{aus}}{V_{ein}} = R_C \frac{dI_C}{dU_{ein}} = SR_C$$

Current gain ~ 1 (small base current, $I_E \sim I_C$)

Output impedance $Z_{aus} \sim R_C$ (as for common emitter)

but: small input impedance!

(smaller by $1/\beta$ compared to common emitter)

$$\frac{dU_{BE}}{dI_E}\approx \frac{dU_{BE}}{dI_C}=\frac{1}{S}=\frac{k\,T}{q_e\,I_C} \qquad (25~\Omega~{\rm bei}~25{\rm C},~{\rm I_C}=1)$$

Couping: AC or DC

Short Excursion

• How do I get the signal into the amplifier?

Frank Simon (<u>frank.simon@kit.edu</u>)

Working Point

Adjusting Amplifiers

 The circuit has to be designed such that a useful signals (as a minimum: transistor is conductive).
 High freedom with AC coupling:

Here: common collector

Electronics for Physicists - WS23/24 Analog Chapter 5

• The circuit has to be designed such that a useful output is possible over the range of expected input

One strategy: Set target values for I_{C} and U_{CE}

Defines: Choice of R_{E:} (U_{CC} - U_{CE}) / I_C

Choice of R₁ and R₂ such that U_B without input signal is set as $U_B = U_{CC} - U_{CE} + 0.7V$

C_{ein} sufficiently large that all relevant input frequencies are passed.

Feedback in Transistor Circuits

Common Emitter with Current Feedback

Electronics for Physicists - WS23/24 Analog Chapter 5

• One additional resistor relative to the "normal" common emitter

$$V_C = U_{CC} - I_C \, R_C$$
 just as for the $- \, dI_C \, R_C$ "normal" circuit

$$\begin{aligned} \frac{U_E}{R_E} &, \quad dU_E = dU_{ein} \quad \text{und} \quad I_E = I_C - I_L + I_B \approx \\ &- dI_C R_C \approx - dI_E R_C = - dU_E \frac{R_C}{R_E} = - dU_{ein} \frac{R_C}{R_E} \end{aligned}$$

Comparing to the "normal" circuit:

$$\frac{ds}{ds} = -\frac{R_C}{R_E}$$
 $V_U = -SR_C = -\beta \frac{R_C}{R_{BE}}$

Data Processing and Electronics

Feedback in Transistor Circuits

Common Emitter with Voltage Feedback

"Spannungsgegenkopplung"

Electronics for Physicists - WS23/24 Analog Chapter 5

• The same principle as negative feedback in the inverting amplifier with an OpAmp:

$$V_U = \frac{U_{aus}}{U_{ein}} = -\frac{R_2}{R_1}$$

Also here: Gain independent of gain of the transistor.

Frank Simon (<u>frank.simon@kit.edu</u>)

Summary

circuit	V_U	V_I	$Z_{ m ein}$	$Z_{ m aus}$ für d $U_{ m ein}$
common emitter $ \begin{array}{c} \downarrow \\ R_{C} \\ \downarrow \\ B \\ \downarrow \\ E \end{array} $	$-SR_{ m C}\parallel R_{ m CE}$	β	$R_{ m BE}$	$R_{ m C} \parallel R_{ m CE}$
c. emitter /w current feedback $R_{\rm C}$ $R_{\rm E}$	$-rac{R_{ m C}}{R_{ m E}}$	β	$R_{ m BE}+etaR_{ m E}$	$R_{ m C} \parallel R_{ m CE}$
c. emitter /w voltage feedback	$-rac{R_2}{R_1}$	$rac{R_2}{R_{ m C}}$	R_1	$R_{\mathrm{C}} \parallel \frac{1}{S} \left(1 + \frac{1}{S}\right)$

Next Lectures: Digital - Thursday, December 21 Analog 10 - Chapters 05, 06 - Tuesday, January 9, 2024

Merry Christmas and a Happy New Year!

Time Plan for Next Lectures

A few Changes coming up!

Calender Week	Tuesday	Thursday
45	07.11. Analog	09.11. Digital
46	14.11. Analog	16.11. Digital
47	21.11. Digital	23.11. Analog
48	28.11. Digital	30.11. Digital
49	05.12. Digital	07.12. Analog
50	12.12. Digital	14.12. Analog
51	19.12. Analog	21.12. Digital
2	09.01. Analog	11.01. Digital
3	16.01. Digital	18.01. Digital
4	23.01. Analog	25.01. Digital
5	30.01. Analog	01.02. Digital
6	06.02. Analog	08.02. Analog
7	13.02. Analog	15.02. Digital

Electronics for Physicists - WS23/24 Analog Chapter 5

Electronics for Physicists

Frank Simon **Institute for Data Processing and Electronics**

Karlsruhe Institute of Technology

Analog Electronics

KIT, Winter 2023/24

