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1. Introduction

Seismic full waveform inversion (FWI) aims at a complete seismic characterization by exploiting
the full signal content of seismic measurements. The aim of FWI is to fit iteratively the relevant
signals (amplitude and phase) by numerical solutions of the full wave equation. The main
product of FWI are multi-parameter models of acoustic/elastic/viscoelastic/anisotropic material
properties which can explain the traveltime and amplitudes of (selected) recorded signals. Such
multi-parameter models can help to improve the petrophysical characterization of geological site
properties in-situ. In combination with the complementary information from reflection seismic
images, FWI can thus help to characterize and monitor the in-situ conditions of rocks.
A second fundamental advantage of FWI is the possibility of utilizing various wave phenomena.

In principle, all wave types predictable by the full wave equation can be exploited. This can
include reflected waves, multiples, refracted waves, guided waves, mode conversions between P-
and S-waves, (tunnel) surfaces waves, borehole guided waves etc. Unconventional wavefields often
appear in complex environments in the presence of strong material discontinuities. Although each
wave phenomena will require a special FWI workflow, they can be exploited to image specific
features which conventional waves don’t ”see”.
In recent 20 years FWI has received great attention and has been applied sucessfully to a

broad range of spatial scales and wave types (Figure 1.1).
In a nutshell FWI is a PDE constrained local optimization procedure to iteratively fit observed

data. The widely applied FWI workflow is illustrated in Figure 1.2. Starting with an initial model
we iteratively calculate model updates utilizing the gradient of the misfit function which can be
effectively calculated by the adjoint-state method. Without processing gradient based FWI
would converge to the next local minimum of the misfit function which should be avoided. Most
strategies change the topology of the misfit function during iterations by various means such as
windowing the data in time and frequency, smoothing the model or the gradient, or changing
the misfit function itself during iterations. The most important technique is called multi-scale
approach which uses low frequencies (long wavelength) first and the gradually increases the
bandwidth of the data to resolve finer details making the inverse problem gradually more non-
linear. The features of the FWI workflow must be adapted to the problem under investigation. In
marine environment FWI is often performed using the acoustic approximation as the wavefield
is dominated by compressional waves. Recent applications of FWI to marine data have been
very impressive. The resolution of the retrieved P-wave velocity models could be increased
significantly compared to traveltime tomography reconstructions (?). In contrast, applications
to land seismic data are much more challenging. The reasons are (1) the higher complexity of
land seismic data due to the presence of P-, S-, and surface waves and (2) current limitations of
the FWI technology in recovering multi-parameter models in viscoelastic media.
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Figure 1.1.: Today, 2D acoustic/elastic FWI has become feasible on a wide range of applications/scales covering
nine orders of magnitude. Different wave types and acquisition configurations (transmission versus
reflection) are applied. Applications in which the wavefield is composed of multiple scattered/reflected
waves which is the case in medical imaging and reflection seismics are most challenging.

Loop over iterations

Selection of misfit, shots, frequency range, time window

Initial model m0 Forward modelling Optimization mi+1

Field data d Synthetic data d’ Gradient: ∂E
∂m

Misfit E(m) Adjoint modelling

Figure 1.2.: A typical workflow of gradient-based FWI. An initial model that already predicts the (time windowed)
relevant signals at the lowest frequencies within half a cycle is required. For this model the synthetic
seismic response for one or several shots is calculated and compared with the observed signals. Different
misfit functions can be defined at different iterations to quantify the difference between observed and
synthetic signals in an appropriate way. The misfit definition is crucial and drives the ”adjoint”
modelling where the corresponding adjoint wave equations are solved. The correlation of forward and
adjoint wavefield provide the gradients for all model parameters simultaneously. This gradient gives
the direction to update the model to reduce the chosen misfit. Higher order optimization methods that
employ second order derivatives can improve the convergence and reduce parameter trade offs. The
procedure is repeated for other selected shots, higher frequencies, other signals until the procedure has
reached a sufficient local minimum of misfits. The white boxes indicate task may require large storage
of wavefield in space and time. The red boxes indicate the modelling tasks which may demand high
computing time. The green boxes indicate the ”critical” choices of misfit function and optimization
procedure that mainly steer the convergence towards the local minimum.



2. Calculation of gradient

2.1. Born approximation

2.1.1. Scattering series

For an inversion, it would be ideal if there would be a linear relation between the model space
m(x) and the data space u(x). To get such a linear relation, we develop a perturbation series,
based on a Taylor series. The first order of this series is called the Born approximation. It is a
fundamental relation between the data and model spaces and forms the basis for most migrations
(e.g. reverse time migration) and full waveform inversion methods.

To develop the scattering series, we have to introduce perturbations for both the model and
data space. As model parameters, we define

m(x) :=
1

c2(x)
, (2.1)

and split it up into
m(x) = m0(x) + εm1(x), (2.2)

where m0(x) is the background model and εm1(x) a small perturbation of this model.
We do the same for the data u(x), splitting it up into

u(x) = u0(x) + usc(x), (2.3)

where u0(x) is the wavefield that would result if the model was only the background model m0,
and usc(x) contains the perturbations of this wavefield caused by the perturbations of the veloc-
ity model. It can be interpreted as a result of scattering at the model perturbations, therefore it
will here be called the scattered wavefield usc.

Because the background wavefield u0 solves the wave equation (A.1) for the undisturbed model
m0, we get two wave equations, one for the background wavefield and one for the total wavefield:

m0
∂2u0
∂t2

−∆u0 = f(x, t) background wavefield (2.4)

m
∂2u

∂t2
−∆u = f(x, t) total wavefield (2.5)

Subtracting equation (2.4) from (2.5) yields

m
∂2u

∂t2
−m0

∂2u0
∂t2

−∆u+ ∆u0 = 0

⇔ (m0 + εm1)
∂2u

∂t2
−m0

∂2

∂t2
(u− usc)−∆(u− u0) = 0

⇔ m0
∂2usc
∂t2

−∆usc = −εm1
∂2u

∂t2
(2.6)
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This is again a wave equation for usc with the term −εm1
∂2u
∂t2

as source. The scattered wavefield
is thus generated by scattering of the total wavefield at the model perturbations m1.

The solution of equation (2.6) can be found by convolving the Green’s function with the source
term (see equation (A.3)):

usc(x, t) =

∫ t

0

∫
R3

G0(x, y, t− s)(−εm1
∂2u

∂t2
(y, s)) dy ds (2.7)

It has to be considered, that the Green’s function depends on the respective model. In this case,
the Green’s function G0 for the background model m0 is used.

In the following, we will use a shorter notation for the space-time integral by introducing an
operator Ĝ0 that replaces the convolution and the space integral. Thus, equation (2.7) is written
as

usc = −εĜ0m1
∂2u

∂t2
= u− u0 (2.8)

which gives us the solution for the total wavefield

u = u0 − εĜ0m1
∂2u

∂t2
(2.9)

This equation gives an implicit relation for the wavefield u and is called the Lippmann-Schwinger
equation.

If we rearrange equation 2.9 and use a notation with operators, we get[
Î + εĜ0m1

∂2

∂t2

]
u = u0

⇔ u =

[
Î + εĜ0m1

∂2

∂t2

]−1
︸ ︷︷ ︸

scattering operator

u0 (2.10)

with the identity operator Î. The scattering operator describes the relation between the back-
ground field u0 and the total field u.

For an operator Â we can develop the expression [Î + Â]−1 in a Neumann series (?):

[Î + Â]−1 = Î − Â+ Â2 − Â3 + ... (2.11)

With Â = εĜ0m1
∂2

∂t2
, equation (2.10) can be written as a series, which is called the Born series:

u = u0 − ε(Ĝ0m1
∂2

∂t2
)u0 + ε2(Ĝ0m1

∂2

∂t2
)(Ĝ0m1

∂2

∂t2
)u0 + ... (2.12)

= u0 + εu1 + ε2u2 + ...

The first order term u1 = −Ĝ0m1
∂2u0
∂t2

, corresponds to single scattering, while the second order
term u2 = (Ĝ0m1

∂2

∂t2
)(Ĝ0m1

∂2

∂t2
)u0 corresponds to double scattering, meaning that one wave is

scattered at two different points on its travel path.

The first order approximation u = u0+εu1, that is considering only single scattering, is called the
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Born approximation and will be used in the following. With this approximation, the scattered
wavefield is given by usc = εu1. Inserting this in equation (2.6) results in

m0
∂2εu1
∂t2

−∆εu1 = −εm1
∂2(u0 + εu1)

∂t2

⇔ m0
∂2u1
∂t2

−∆u1 = −m1
∂2u0
∂t2

(2.13)

where we neglected the term of the order ε2.
This is now a wave equation for the single scattered field. In the source term appears the back-
ground wavefield u0, so the scattered wavefield is induced by a secondary source that corresponds
to the background wavefield scattered at the model perturbations m1. This secondary scattered
wavefield is then propagating in the background model m0. The background wavefield u0 can be
calculated as before with equation (2.4).
Figure 2.1 shows the principle of the scattering theory: The source f(x, t) is initiating the back-
ground wavefield u0. At model perturbations εm1, the background field is scattered, which leads
to the additional wavefield u1. Because we have different positions of sources and receivers, the
Green’s function differs for both parts of the wavefield. For the background field, we use the
notation Ĝ0 = G(y, xs, t), and for the scattered field with the secondary source Ĝ′0 = G(xr, y, t).
Thus, the wavefields are calculated with the Green’s functions as follows:

u0 = Ĝ0f (2.14)

u1 = −Ĝ′0m1
∂2u0
∂t2

= −m1Ĝ
′
0

∂2

∂t2
(Ĝ0f) (2.15)

✱ ∇
xs xrf(x,t)

y

u0

u1

εm1

m0

Figure 2.1.: Principle of the scattering theory: The from the source f induced background wavefield u0 is scattered
at the model perturbations εm1 in point y, producing the scattered wavefield u1

With equation (2.15), we finally have a linear relation between the scattered wavefield u1 and
the model perturbations m1. For this linear function, it is easy to calculate the derivative of the
wavefield u1 with respect to the model parameters m1, which is called the Frechet-derivative:

∂u1
∂m1

= −Ĝ′0
∂2

∂t2
(Ĝ0f) (2.16)

If we transform the Frechet-derivative into the frequency domain, the second partial derivative
∂2

∂t2
will be replaced by −w2, so that we get

∂u1
∂m1

= w2Ĝ′0Ĝ0f, (2.17)
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where Ĝ0 denotes the Fourier transform of the operator Ĝ0. This derivative will be used for the
inversion as described in the following section.

2.2. Inversion of the scattered wavefield

Now that we have linearized the relation between the scattered field u1 and the model perturba-
tions m1, we can invert this first order scattered wavefield. Therefore, we will use the steepest
gradient method in the frequency domain.

First, we formulate the L2-misfit function E that should be minimized in the inversion. In
frequency domain, the misfit is

E =
1

2

∫
w
|u1|2 dw (2.18)

This means, that the inversion should find a model, for which in the ideal case there is no scat-
tered wavefield. Then, the true model would be the "background" model m0 and there would
be no further model perturbations. With real data, the ideal case will not be reached, but only
a minimum of the misfit function.

The gradient descent method is an iterative inversion method. In each iteration step, the gradi-
ent of the misfit function with respect to the model parameters ∂E

∂m is calculated, and the model
parameters are changed along the direction of this gradient:

m(n+1) = m(n) − α∂E
∂m

(2.19)

By this way, it is assured that the misfit is getting smaller in the next step. Thus, finally a model
with a minimal misfit will be reached. The parameter α in equation (2.19) is the step length and
defines, how much the model parameters can change in one iteration step.

For the calculation of the misfit gradient, we split the wavefield u1 (which is complex in the
frequency domain) up into its real part u1,R and its imaginary part u1,I and insert it in equation
(2.18):

∂E

∂m
=

1

2

∂

∂m

∫
w
|u1,R + iu1,I |2 dw (2.20)

The partial derivative of the complex function is calculated as follows:

∂

∂m
|u1,R + iu1,I |2 =

∂

∂m
(u21,R + u21,I) = 2

(
u1,R

∂u1,R
∂m

+ u1,I
∂u1,I
∂m

)
= 2Re

[(
∂u1,R
∂m

+ i
∂u1,I
∂m

)
(u1,R − iu1,I)

]
= 2Re

[
∂u1
∂m

u∗1

]
Inserting this in equation (2.20) yields

∂E

∂m
=

∫
w

Re

[
∂u1
∂m

u∗1

]
dw (2.21)
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We now use the Born approximation for the Frechet-derivative (∂u1∂m = w2Ĝ′0Ĝ0f , see equation
(2.17)), leading to the misfit gradient

∂E

∂m
=

∫
w
w2 Re

[
Ĝ0f Ĝ′0u∗1

]
dw (2.22)

In this equation, Ĝ0f can be physically interpreted as the forward-propagating wave induced by
the source f , and Ĝ′0u∗1 as the scattered field u1 propagating from the receiver backward in time,
because the complex conjugation in frequency domain corresponds to a reversion of time in time
domain.

Thus, the misfit gradient in frequency domain can be calculated with the following four steps:

1) Calculate the forward wavefield Ĝ0f from the source

2) Backpropagate the scattered wavefield Ĝ′0u∗1 from the receiver

3) Multiply the wavefields

4) Sum over all frequencies

In FWI, we set u1 = uobs − usynth, where uobs is the measured data and usynth the data that is
resulting from the currently used model. u1 is then the missing/residual wavefield and is inter-
preted as the single scattered wavefield in terms of the Born approximation.

For the calculation of the gradient, we still have the problem that we need to know the Green’s
functions, which becomes impossible for complex models. To resolve this problem, we will intro-
duce in the following sections the linearized forward and the adjoint operator, which will enable
us to calculate the misfit gradient in time domain.



3. The adjoint-state method

3.1. Adjoint method

3.1.1. Linearization of the forward operator

In this section, we present a second method to derive the linear relation between data and model
that resulted from the Born approximation in section 3.2.1
Again, we split our wavefield u = u0 + u1 up in background and scattered field. Our model
parameters are m = m0 + m1, where m1 describes the perturbations of the background model
(Note: We changed the notation compared to the sections before, no longer using ε). We
introduce the forward operator F̃ , that describes the relation between model m and data u, so
u = F̃ [m]. The Taylor series of u near to m = m0 then is

u = u0 +
∂F̃

∂m
[m0]m1 +

1

2
〈∂

2F̃

∂m2
[m0]m1,m2〉 (3.1)

We will consider only the first order term of this Taylor series, because the following terms
describe the wavefield that is generated by double, triple, etc. scattering. As for the Born
approximation, we only consider single scattering.
We define the linear operator

F :=
∂F̃

∂m
=

∂u

∂m
(3.2)

Compared with equation (3.1), this yields

u = u0 + Fm1 ⇒ u1 = Fm1, (3.3)

so that F describes a linear relation between u1 and m1.

To derive with this the Born approximation, we differentiate the acoustic wave equation (A.1)
with respect to m, which gives

∂2u

∂t2
+m

∂2

∂t2
∂u

∂m
−∆

∂u

∂m
= 0 (3.4)

Using (3.2) and (3.3), we replace ∂u
∂m = F = u1

m1
, resulting in

∂2u

∂t2
+ (m0 +m1)

∂2

∂t2
u1
m1
−∆

u1
m1

= 0

⇔ m1
∂2

∂t2
(u0 + u1) + (m0 +m1)

∂2u1
∂t2

−∆u1 = 0

In this equation, we can neglect the term m1
∂2u1
∂t2

, because those terms of higher order are
describing multiple scattering, that we do not consider in this approximation. When neglecting
those terms, we get the wave equation

m0
∂2u1
∂t2

−∆u1 = −m1
∂2u0
∂t2

, (3.5)
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which is the same than equation (2.13) that resulted from the Born scattering theory. The
solution for the scattered field u1 is then given by the Green’s function as

u1 = −Ĝ0m1
∂2u0
∂t2

(3.6)

3.1.2. Adjoint operator of the linear operator F

We first introduce the needed mathematical theory concerning adjoint operators. For further
details, see ?.

If H1 and H2 are Hilbert spaces and the operator T : H1 → H2 is linear, then the adjoint
linear operator T ∗ : H2 → H1 can be found with x ∈ H1 and y ∈ H2 via

〈Tx, y〉H2 = 〈x, T ∗y〉H1 , (3.7)

where 〈〉H1 and 〈〉H2 denote scalar products in H1 and H2, respectively. In the integral notation
of the scalar products, this means∫

H2

Tx(r) y(r) drH2 =

∫
H1

x(r) T ∗y(r) drH1 (3.8)

We now apply this on our problem u1 = Fm1. The adjoint operator F ∗ thus fulfills the equation

〈dobs, Fm1︸ ︷︷ ︸
u1

〉 = 〈F ∗dobs,m1〉, (3.9)

where the left side is a scalar product in data space and the right side one in model space. The
adjoint operator is thus a linear map from data into model space, while F is a linear map from
model to data space.
Thus, we can interpret F as forward operator and F ∗ as imaging or backward operator, which
projects the observed data back to the model parameters that caused the observed wavefield (see
figure 3.1).

✱ ∇
f(x,t)

F

F*

m1

m0

dobs

Figure 3.1.: Interpretation of the forward operator F and its adjoint operator F ∗, that works as a backward
propagator

In FWI, the adjoint operator is of importance in the context of minimization. The goal of the
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inversion is to minimize the L2 misfit function

J(m) =
1

2
||dobs − F̃ [m]||2

=
1

2

∑
r,s

∫ T

0
|dobs − F̃ [m]|2 dt, (3.10)

where dobs− F̃ [m] is the difference between the observed data and the data that results from the
model, and

∑
r,s denotes the summation over all sources and receivers.

We will show in the following that the misfit gradient ∂J
∂m can be expressed via

∂J

∂m
= F ∗(F̃ [m]− dobs) (3.11)

With this, we can use the steepest gradient method to update the model in each iteration step
via

m(n+1) = mn − α ∂J
∂m

(3.12)

This method is called the adoint method, because the adjoint operator F ∗ is used to calculate
the misfit gradient.

If we know F ∗, we can thus perform

• Imaging by applying F ∗ one time to the observed data (Reverse Time Migration)

• Full waveform inversion by applying F ∗ iteratively to the residual wavefield F̃ [m]− dobs

We now want to proof equation (3.11). The linearized forward operator F is defined as in section
3.3.1 as F = ∂F̃

∂m [m]. With that, the Taylor expansion of F̃ gives

F̃ [m+ h] = F̃ [m] + Fh+O(h2) (3.13)

Inserting this into the misfit function J(m+ h) yields

J(m+ h) =
1

2
〈F̃ [m+ h]− dobs, F̃ [m+ h]− dobs〉

=
1

2
〈F̃ [m]− dobs, F̃ [m]− dobs〉+ 〈Fh, F̃ [m]− dobs〉+O(h2)

= J(m) + 〈h, F ∗(F̃ [m]− dobs)〉+O(h2) (3.14)

This corresponds to the Taylor series of J(m+h). The comparison of equation (3.14) with the
general Taylor expansion

J(m+ h) = J(m) + 〈h, ∂J
∂m
〉+O(h2) (3.15)

gives us as result for the misfit gradient

∂J

∂m
= F ∗(F̃ [m]− dobs), (3.16)

which is exactly the equation of the adjoint method that we wanted to proof.

In this equation, the expression on which the adjoint operator is applied is called the adjoint
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source. It depends on the misfit function that is used. For the L2 norm as misfit function, the
adjoint source is the residual wavefield F̃ [m]− dobs.
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3.1.3. Calculation of F ∗ for the wave equation

As we showed in the previous section, it is necessary for the FWI to know the adjoint operator
F ∗. In this section, it will be derived for the wave equation.

The starting point is the equality of scalar products in the two domains (see equation (3.7)):

〈dobs, Fm1〉︸ ︷︷ ︸
data space

= 〈F ∗dobs,m1〉︸ ︷︷ ︸
model space

(3.17)

For the moment, we consider only one source but multiple receivers at the locations xr, so that

dobs(x, t) =
∑
r

dr(t)δ(x− xr) (3.18)

We will come back to the multiple-source problem in section 4.1.

With Fm1 = u1, equation (3.17) can be written as∫
R3

∫ T

0
dobs(x, t) u1(x, t) dt dx =

∫
R3

F ∗dobs(x) m1(x) dx (3.19)

The relation u1 = Fm1 implies the two wave equations

(m0
∂2

∂t2
−∆)u0 = f (3.20)

(m0
∂2

∂t2
−∆)u1 = −m1

∂2u0
∂t2

, (3.21)

which are describing the generation and propagation of the background wavefield u0 and the
scattered wavefield u1, respectively (see section 3.3.1).

We now consider an auxiliary wavefield q(x, t), the adjoint wavefield, that solves the wave equa-
tion with dobs as right-hand side:

(m0
∂2

∂t2
−∆)q(x, t) = dobs(x, t) (3.22)

It can be interpreted as wavefield that is propagating backward in time with the observed data
as source.
We substitute this into 〈dobs, Fm1〉 and obtain

〈dobs, Fm1〉 =

∫
R3

∫ T

0
(m0

∂2

∂t2
−∆)q(x, t)u1(x, t) dt dx

=

∫
R3

∫ T

0
m0

∂2q

∂t2
u1 dt dx−

∫
R3

∫ T

0
∆q u1 dt dx (3.23)
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We apply two times a partial integration in both space and time on this equation. The first
integral is integrated in time, the second one in space. For the first one, we obtain∫

R3

∫ T

0
m0

∂2q

∂t2
u1 dt dx =

∫
R3

m0
∂q

∂t
u1

∣∣∣∣T
0

dx−
∫
R3

∫ T

0
m0

∂q

∂t

∂u1
∂t

dt dx

=

∫
R3

m0
∂q

∂t
u1

∣∣∣∣T
0

dx−
∫
R3

m0q
∂u1
∂t

∣∣∣∣T
0

dx+

∫
R3

∫ T

0
m0q

∂2u1
∂t2

dt dx

(3.24)

For the second one, we use the theorem of Green, which transforms a volume integral into a
surface integral via ∫

V
(u1∆q − q∆u1) dx =

∫
∂V

(
u1
∂q

∂n
− q∂u1

∂n

)
dSx, (3.25)

where ∂V is the surface of the volume V , ∂q
∂n is the derivative in direction of the normal vector

of the surface and dSx means integration over the whole surface (?).
With this theorem, the second integral in equation (3.23) can be written as∫

V

∫ T

0
∆q u1 dt dx =

∫
V

∫ T

0
q∆u1 dt dx+

∫
∂V

∫ T

0
u1
∂q

∂n
dSx dt−

∫
∂V

∫ T

0
q
∂u1
∂n

dSx dt,

(3.26)

where we substituted the space integration over R3 with an finite volume V . This makes no
difference, because V can be chosen so big that the integration would be almost the same than
for the infinite space.

Together with (3.24), the result for the scalar product is

〈dobs, Fm1〉 =

∫
V

∫ T

0
q

(
m0

∂2

∂t2
−∆

)
u1 dx dt+

∫
V
m0

∂q

∂t
u1

∣∣∣∣T
0

dx−
∫
V
m0q

∂u1
∂t

∣∣∣∣T
0

dx

−
∫
∂V

∫ T

0
u1
∂q

∂n
dSx dt+

∫
∂V

∫ T

0
q
∂u1
∂n

dSx dt (3.27)

This can be simplified significantly by introducing boundary conditions. Because we chose the
volume V so large that it covers nearly the space R3, it is impossible for the waves to reach
the boundary of this volume in the considered travel time T . Thus, the integrations over the
boundary of V can be neglected. Additionally, we use the starting conditions u(t = 0) = 0 and
∂u
∂t (t = 0) = 0 and the final conditions q(t = T ) = 0 and ∂q

∂t (t = T ) = 0. Then, equation (3.27)
is reduced to

〈dobs, Fm1〉 =

∫
V

∫ T

0
q(x, t)

(
m0

∂2

∂t2
−∆

)
u1(x, t) dx dt

= −
∫
V

∫ T

0
q(x, t)m1

∂2u0
∂t2

dx dt, (3.28)

where we used equation (3.21) for the last step.
Because of 〈dobs, Fm1〉 = 〈F ∗dobs,m1〉, this gives us the result

F ∗dobs = −
∫ T

0
q(x, t)

∂2u0
∂t2

(x, t) dt (3.29)
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It corresponds to a zero-lag cross-correlation of the adjoint field q(x, t) (backpropagating) and
the second derivative of the forward propagating background field u0(x, t). In this form, it is the
imaging condition for the Reverse Time migration. The adjoint field q corresponds here to the
time reversed observed data.

If we now come back to the relation used in FWI

∂J

∂m
(m) = F ∗(F̃ [m]− dobs) (3.30)

(see (3.11)), and compare it with the imaging condition (3.29), we conclude that we just have to
modify the adjoint source in the adjoint equation (3.22)

(m0
∂2

∂t2
−∆)q(x, t) = fadj (3.31)

If we use the observed data as adjoint source, i.e. fadj = dobs, we get the imaging condition for
the Reverse Time Migration (3.29). But if we use instead the residual wavefield F̃ [m]− dobs, we
get the result

F ∗(F̃ [m]− dobs) = −
∫ T

0
q(x, t)

∂2u0
∂t2

(x, t) dt =
∂J

∂m
(m) , (3.32)

where q(x, t) is now the backward propagated wavefield with the residuals of observed and
synthetic data as source. This equation makes it possible to calculate the misfit gradient, that
can then be used to update the model iteratively with the steepest gradient method.



4. Adaption of FWI for real data

4.1. Multiple sources

In the last section, we derived the imaging condition for the Reverse Time Migration for one
source:

F ∗dobs = −
∫ T

0
q(x, t)

∂2u0
∂t2

(x, t) dt (4.1)

For multiple sources and receivers, we have one observed time series for each pair of source
and receiver, so we write the observed data as summation over those time series, i.e. dobs =∑

s

∑
r dobs,r,s. We can then write the scalar product 〈dobs, Fm1〉 as

〈dobs, Fm1〉 = 〈dobs, u1〉 =
∑
s

∑
r

∫ T

0
dobs,r,s(t)u1,s(xr, t) dt (4.2)

Because it is no problem to calculate the wavefield for one source at many receivers, we can
summarize the summation over all receivers for one source to 〈dobs,s, Fsm1〉, so that

〈dobs, Fm1〉 =
∑
s

〈dobs,s, Fsm1〉 (4.3)

The adjoint operator is then calculated as follows:

〈F ∗dobs,m1〉 = 〈dobs, Fm1〉 =
∑
s

〈dobs,s, Fsm1〉 =
∑
s

〈F ∗s dobs,s,m1〉

= 〈
∑
s

F ∗s dobs,s,m1〉 (4.4)

This shows, that

F ∗dobs =
∑
s

F ∗s dobs,s (4.5)

which means that the imaging condition for multiple sources is the sum of the imaging conditions
for each single source. It is calculate by

F ∗dobs = −
∑
s

∫ T

0
qs(x, t)

∂2u0,s
∂t2

(x, t) dt, (4.6)

where u0,s is the forward field for the source s and qs the adjoint field for the source s. The
adjoint field is the backpropagated field with the observed data dobs,s as source. Therefore, all
receivers act simultaneously as seismic sources for the adjoint field.

To calculate the adjoint operator F ∗ for FWI, we only have to replace the adjoint source dobs by
the residuals ˜F [m]− dobs. The summation over all sources remains the same so that the misfit
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gradient for multiple sources is calculated via

∂J

∂m
= F ∗(F̃ [m]− dobs) =

∑
s

F ∗s (F̃s[m]− dobs,s) (4.7)

4.2. General procedure of adjoint Full Waveform Inversion

In this section, we formulate a general step-by-step procedure for an adjoint FWI with multiple
sources and receivers. The steps are listed up in the following. Arrows connecting steps symbolize
the loops that have to be implemented: The first one is needed to summarize over all sources,
and the second one realizes the iterative inversion (steps 1-8 are one single iteration step).

0. Create starting model m0

1. Forward calculation for each source in the current background model m0

→ u0,s(x, t) = F̃ [m0]

2. Store u0,s(x, t)

3. Solve the adjoint equation with adjoint sources ˜F [m0] − dobs (backward propagation of
adjoint sources) → qs(x, t)

4. Apply zero-lag cross-correlation to calculate misfit gradient:

∂Js
∂m

= −
∫ T

0
qs(x, t)

∂2u0,s
∂t2

dt

Repeat steps 1. - 4. for all sources

5. Sum over all sources:
∂J

∂m
=
∑
s

∂Js
∂m

6. Calculate the step length α or use a constant value

7. Update model:

m1 = m0 − α
∂J

∂m

8. Set updated model as new starting model: m1 = m0

Go back to 1. and repeat steps 1. - 8. with new starting model

9. When any stopping criterion is reached → final model m1

The calculation of the step length (step 6) can be done in the following way: For a few selected
sources, the misfit J is calculated for different step lengths α. The misfit values are plotted
against α and fitted by a parabolic function. The minimum of this parabolic fit is reached for
the optimal step length that will then be used for the model update.

In each iteration step, we have one forward calculation for the background field u0 and one
for the adjoint field q. Thus, the total amount of forward calculations for N iteration steps is
2N plus eventually some calculations for the step length α.
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4.3. Inversion of the source time function

If we are working with field data, we often have the problem that the source function is not
exactly known. Because of attenuation effects, even a receiver close to the source does not re-
cover the source function accurately. However, for the FWI, the source function is needed for the
forward calculation of the background field. To resolve this problem, we do a so-called inversion
of the source time function, which is realized by a deconvolution.

The observed data dobs is generated by the unknown true source strue. We try to approxi-
mate this true source with synthetic source s that generates by forward calculation the synthetic
data u. The synthetic field of one source at one receiver at position xr can be calculated with
the Green’s function of the model m0 via a convolution:

u(xr, t) =

∫ T

0
Gm0(xs, xr, t− t′)s(t′) dt′ (4.8)

A convolution in time domain corresponds to a multiplication in frequency domain:

u(xr, w) = Gm0(xs, xr, w)s(w) (4.9)

Because the multiplication is easier to handle than the convolution, the deconvolution will be
done in the frequency domain.

The observed data is calculated in the same way, only that the Green’s function of the true
model and the true source are used, yielding

dobs(xr, w) = Gmtrue(xs, xr, w)strue(w) (4.10)

Our goal is to find a linear filter c(w) in the frequency domain so that

strue(w)− c(w)s(w) = min (4.11)

We could then approximate the true source by the filtered synthetic one. The filter c(w) is called
source wavelet correction filter.

Because the true source is unknown, it is not possible to use the condition (4.11) in this form.
We first have to make an approximation by assuming that the Green’s function is equal for the
true and for the synthetic model, i.e.

G := Gm0 = Gmtrue (4.12)

Then we can multiply the minimum condition with G, which gives

G(strue − cs) = dobs − cu = min (4.13)

We can thus apply the filter c to the synthetic seismograms u instead of applying it on the syn-
thetic source. The optimal filter will reduce the residuals of observed and synthetic seismograms
to a minimum. Although the assumption Gm0 = Gmtrue is very strong, it works for FWI.
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For minimization, we formulate the difference in (4.13) as L2-norm:

Js =

M∑
k=1

∫
w
|dobs(xk, w)− c(w)u(xk, w)|2 dw + ε2

∫
w
|c(w)|2 dw︸ ︷︷ ︸
damping

(4.14)

The summation over k considers that we have multiple (M) receivers at the locations xk. The
second term is a damping term that will assure numerical stability by avoiding a division by
zero.
For discrete frequencies wl = l∆w, l = 0, ..., N − 1, we can write

Js =

(
M∑
k=1

N−1∑
l=0

|dobs(xk, wl)− c(wl)u(xk, wl)|2 + ε2
N−1∑
l=0

|c(w)|2
)

∆w (4.15)

In frequency domain, the filter and the wavefields are consisting of complex values. We write the
filter components c(wl) as sum of real and imaginary part:

c(wl) = cl = cl,R + icl,I (4.16)

The function Js is minimized when all partial derivatives are zero, so

∂Js
∂cl,R

= 0 and
∂Js
∂cl,I

= 0 (4.17)

If we split also the wavefields dobs and u up into their real and imaginary parts, we can calcu-
late both partial derivatives. The summation of both results gives us the result for the filter
components

cl =

∑M
k=1 u

∗(xk, wl)dobs(xk, wl)

ε2 +
∑M

k=1 |u(xk, wl)|2
(4.18)

This filter is called Wiener-filter or water-level deconvolution.

For the application of the source time function inversion in FWI, there are some additional
remarks:

• An advantage of this method is that the filter coefficients cl are resulting from a direct
inversion, i.e. only one iteration step is needed

• The filtered signal c(w)s(w) corresponds approximately to the true source signal

• A stable and causal result for strue indicates a stable convergence

• For the synthetic source s, any signal is possible, e.g. a δ-impulse or a Ricker wavelet

• In FWI, the source time function inversion is applied once per frequency interval

• The same method can be applied to invert receiver-function correction filters
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4.4. Correction of geometrical spreading

If we want to apply a 2D FWI on 3D field data, it is necessary to correct the geometrical
spreading, because the spreading in the 2D simulation differs from the real one. Field data is
usually generated by a point source, e.g. by a hammer blow or an explosion. From this source,
spherical waves are propagating. On the contrary, a 2D simulation implies a line source along
the third (missing) dimension, which results in a propagation of plane waves (see figure 4.1).

Δ

Δ
Δ

Δ

*
*

*

*
*

x1

x2
wavefront

(a) 2D simulation: Line source

Δ

Δ
Δ

Δ

*

x1x2

wavefront

(b) 3D field data: Point source

Figure 4.1.: Differences of geometrical spreading between the 2D simulation (a)) and the 3D field data (b)). In
2D, a line source is assumed, while in 3D, we have a point source. x2 is the third dimension that will
be missing in the 2D simulation.

Our goal is to find a filter F (r, k) in frequency domain that transforms the 3D data into 2D data
assuming a line source. Here, r denotes the distance to the source. In order to find this filter,
we consider the acoustic wave equation[

∂2

∂t2
− c2(x)∆

]
u(x, t) = f(x, t) (4.19)

The Green’s function G(x, xs, t) is the solution of[
∂2

∂t2
− c2(x)∆

]
G(x, xs, t) = δ(x− xs)δt (4.20)

with the source location xs. In frequency domain, this equation corresponds to[
k2 + ∆

]
G(x, xs, w) = −4πδ(x− xs) (4.21)

Assuming a constant velocity c, we obtain the follwing solutions in the far field:

3D : G3D(x, xs, w) =
eikr

r
(4.22)

2D : G2D(x, xs, w) =

√
2π

kr
eikreiπ/4 (4.23)

with r = ||x−xs||. These solutions can be proved by transforming the Laplace operator in equa-
tion (4.21) into spherical (3D) or polar coordinates (2D) and then inserting the Green’s functions.

The correction filter F should tranform the 3D data into 2D data, therefore it can be applied on
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the Green’s function, so that G2D = F (r, k)G3D. Thus we have

F (r, k) =
G2D

G3D
=

√
2πr

k
eiπ/4 (4.24)

The factor eiπ/4 effects a phase shift of π
4 , and the squared term effects a correction of the

amplitudes. With k = w
c , this can be written as

F (r, k) =
√

2rc

√
π

w
eiπ/4 =

√
2rc FT{

√
t−1}, (4.25)

where FT{
√
t−1} is the Fourier transform of the function

√
t−1. We define this now as the phase

correction. It is independent of r and easy to implement.

The amplitude correction
√

2rc depends on the travel distance r. The relation r = ||x − xs|| is
only valid for a homogeneous medium, where no reflections can occur. This leads to different
practical implementations of the amplitude correction depending on the travel path of the waves.
We will here take a look at two different cases.

• Case 1: Reflection seismics

*

Δ

r
c

Figure 4.2.: Travel path of a re-
flected wave

If reflected waves are recorded, their travel path r is in the
beginning unknown and can only be calculated if we know
the model velocity. With an average velocity c and the
recorded time t, the travel path is r = ct. We substitute
r in the amplitude correction term to eliminate it, so that

Famp =
√

2rc = c
√

2t (4.26)

The amplitude correction factor thus is proportional to the square root of the travel time,
which makes the correction quite simple. It works only well in smooth models and for not
too complex wave paths.

• Case 2: Shallow surface seismics

*

Δ{

r

Figure 4.3.: Travel path of a direct
wave

For shallow seismic fields, the waves are travelling nearly
on the direct wave, so that the travel path r is equal to
the offset and therefore known. We can thus eliminate the
unknown velocity c in the amplitude correction factor via
c = r

t :

Famp =
√

2rc = r

√
2

t
(4.27)

Even if the spreading correction was initially derived for a homogeneous acoustic medium,
this correction for shallow surface seismics works surprisingly well also for elastic surface
waves.



5. Full Waveform Inversion of
shallow-seismic wavefields

5.1. Motivation

In this chapter, the application of FWI to shallow-seismic surface waves will be described. Shal-
low seismic refers in this context to a penetration depth of the waves up to 20-30 m. This zone,
also called the "critical zone", is the transition zone between earth and atmosphere and therefore
highly affected by weathering. This leads to very strong vertical and sometimes lateral variations
of visco-elastic material properties that can be in the order of a few 100 %.

The imaging of this "critical zone" is important for different purposes. It is necessary for a
geotechnical site characterization, which gives conclusions about the stability of buildings. It is
also relevant for hazard analysis. Cavities in the shallow underground can be detected and so
a collapse of them can be predicted or even avoided. Additionally, the shear wave velocity in
the uppermost 30 m is a measure for the local site amplification due to surface waves. The site
amplification indicates how high the amplitudes of surface waves would be at a certain location.
If it is known, it can be predicted for an earthquake in which regions the highest damage will
occur. Other application fields of shallow seismics can be found among others in hydrology or
archaeological prospection.

Shallow seismic wavefields are composed of surface waves, refracted waves and reflected waves (see
figure 5.1a)). The refracted waves are the fastest and therefore the first ones that are recorded
at the receivers. Reflected waves only occur if there are strong contrasts in the underground.
The surface waves are the slowest waves but show the highest amplitudes. They are behaving
dispersive (see figure 5.1b)), i.e. higher frequencies are travelling slower than low frequencies.

Figure 5.1.: a) Different wavetypes occurring in the shallow seismic wavefield. b) Seismograms of a shallow seismic
wavefield, the arrows are indicating the wavetypes of a).

For geotechnical site characterization, the surface waves are the most suitable because of the
following reasons:
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• They are easily excited, e.g. by hammer blows or explosions

• They generate the strongest signals in the seismograms

• The penetration depth is up to 30-40 m

• They are highly sensitive to the shear wave velocities

The classical approach to get information about the shallow underground is the inversion of
dispersion curves, using only the surface waves. From the dispersion curves, it is possible to get
the 1D function vs(z).
In contrast to this method, a Full Waveform Inversion exploits the full information content of
the seismograms, so additionally to the surface waves the refracted and reflected waves are also
considered.

5.2. Elastic FWI

For shallow seismic fields, an elastic FWI is necessary. It performs a joint inversion of the veloc-
ities vp, vs and the density ρ. As misfit function E, the L2-misfit of the normalized seismograms
is used:

E =

∑Ns
i=1

∑Nr
j=1 |ŝi,j − d̂i,j |2

NsNr
(5.1)

with the normalized synthetic seismograms ŝi,j = si,j/|si,j | and the normalized observed data
d̂i,j = di,j/|di,j |. Ns and Nr are the numbers of sources and receivers, respectively.
For the iterative model updates, the conjugate gradient method is used, where the misfit gradients
are calculated with the adjoint state method (see chapter 2). The forward modelling is done with
a viscoelastic Finite Difference algorithm.
In the following sections, two challenges are described that have to be handled in order to get
results of high quality: The generation of a suitable starting model and the implementation of
attenuation in the FWI.

5.2.1. Generation of starting model

The starting model for the inversion has a high influence on the accuracy and convergence of
the method. Depending on the starting model, different local minima of the misfit function can
be reached instead of the global minimum, that would represent the best solution. We will show
this effect for a specific example, as well as possibilities to improve the starting model.

As example, we consider a homogeneous halfspace with the velocity vs,1 = 200 m
s and a thin

layer in a depth between 3 m and 5 m with a velocity of vs,2 = 400 m
s (see table 5.1). Figure

5.2 shows the misfit function for this model. As misfit, the L2-norm of the residuals of true and
synthetic data is used.

Table 5.1.: S-wave velocity model: The depth z indicates the upper edge of the layers.

z in m vs in m/s

0 200

3 400

5 200
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Figure 5.2.: Misfit function in dependence of the two S-wave velocities vs,1 and vs,2. The interfaces are at the
same depth as in the model (table 5.1). The white point indicates the true model parameters, the
arrows are showing the directions of the gradient.

In figure 5.2, we can see that there is not only one minimum for the true model parameters, but a
wide one, that is almost independent of the velocity vs,2. The arrows show, in which direction the
parameters would be changed by the steepest gradient method. We can see that if for example
vs,1 is chosen slightly too high in the starting model, the parameters would change in the wrong
direction, so that the final model would be further away from the true one than the starting model.

To find an appropriate starting model, there exist different possibilities. One of them is to
apply a frequency filter on the data. Figure 5.3 shows the misfit function after a lowpass filter
with 15 Hz has been applied on the data. The minimum is now much wider, so that the starting
model can differ more from the true one without resulting in a wrong local minimum.

Figure 5.3.: Misfit function for filtered data, as filter a 15Hz lowpass was used

The inversion result can therefore be improved by performing first an inversion for the filtered
data, and then using the result as starting model for the data without filtering. It is also possible
to use different filters, starting with a small bandwidth and augmenting it slowly until the whole
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frequency content of the data is used.

A disadvantage of this method is that it is very time consuming. Therefore, other methods
to derive a starting model might be more effective. A second method is to build the starting
model via an inversion of the dispersion curves. This can be done in one dimension, resulting in
a velocity function vs(z). This result can then be used as starting model for the FWI. Figure
5.4 shows the corresponding misfit function. We can see that the wide global minimum is now
reached for all starting models in the showed range.

Figure 5.4.: Misfit function with inversion of dispersion curves

??? was genau zeigt Abb.?

5.2.2. Attenuation

A second challenge for FWI is the attenuation of seismic data. In a viscoelastic medium, we have
the effect of intrinsic attenuation. Wave energy is transformed into heat or into the motion of
particles, which results in a loss of amplitude depending on the travel distance of the wave. Addi-
tionally, the attenuation is frequency-dependent, the amplitudes of high frequencies are damped
more than those of lower frequencies. This leads to a dispersion effect visible in the seismograms.

To compensate the decrease of amplitudes with the offset, normalized seismograms are used
to calculate the misfit function (see equation 5.1). To model the frequency loss with the distance
correctly, it is necessary to do a source signal inversion, where the damping parameter Q is con-
sidered. This damping parameter has to be estimated before on the basis of a-priori information.
When Q is known, it can be used for a viscoelastic forward modelling, which is able to model
the dispersion as a consequence of attenuation correctly. We thus perform an elastic FWI, where
only the forward modelling is calculated for a viscoelastic medium. Until now, it is not possible
to invert also for the damping parameters Q.



A. Appendix

A.1. The Green’s function

In the following, we consider the scalar acoustic wave equation of the form[
∂2

∂t2
− c2(x)∆

]
u(x, t) = f(x, t) (A.1)

with u(x, 0) = ∂u
∂t (x, 0) = 0. Here, u is the pressure, c the sound velocity and f the source

function. In general, we have three space dimensions, so x ∈ R3 and ∆ = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
.

The Green’s function G(x, y, t) of this differential equation is its impulse response, which means
it is the solution of the equation with a delta-function as source function:[

∂2

∂t2
− c2(x)∆x

]
G(x, y, t) = δ(x− y)δt (A.2)

The source function describes a delta-impulse at the location x = y and at the time t = 0. There-
fore, the Green’s function depends on the receiver position x, the source position y and the time t.

If we know the Green’s function, we can calculate the pressure field for any arbitrary source
function by convolving the Green’s function with the source function and integrating over the
whole model space:

u(x, t) =

∫ t

0

∫
R3

G(x, y, t− s)f(y, s) dy ds (A.3)


