

Full Waveform Inversion

Applications to shallow seismic surface waves

Thomas Bohlen

GEOPHYSICAL INSTITUTE, DEPARTMENT OF PHYSICS

Outline

- 1 Introduction
- 2 Methodology
 - FD Simulation
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation
- 3 2D Field data applications
 - Layered subsurface
 - 2-D local trench
 - Fault Zone
- 4 Towards 3D viscoelastic FWI of 3D 9-C field data
- 5 Summary

Near Surface in this context refers to

- "Critical Zone"
- Up to 20-30 m depth
- Very strong vertical and sometimes lateral variations of viscoelastic material properties (a few 100% per cent)
- Weathering zone transition zone between earth and atmosphere

Imaging of the "critical zone" is important for

- Geotechnical site characterization, e.g. stability of buildings
- Hazard analysis
 - Detection of cavities
 - Vs30: local site amplification due to surface waves
- Prospecting archeological objects
- etc.

Shallow seismic surface waves are

- easily excited
- strong signals
- highly sensitive for Vs (depth)
- penetrating up to 30-40 m depth

useful for geotechnical site characterization

Field data acquisition

time / s

Classical approach: 1-D inversion of (local) dispersion curves

FWI exploits the full information content of seismic signals !

surface waves, refracted and reflected waves

FWI exploits the full information content of seismic signals !

surface waves, refracted and reflected waves

Challenges for 2-D/3-D elastic FWI of surface waves

- **1.** Robust workflow ?
- 2. Can we infer **lateral variations of Vs**?
- 3. Can we derive **multi-parameter models** of Vs, Vp, Qp, Qs, density ?

Outline

- 1 Introduction
- 2 Methodology
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation
- 3 2D Field data applications
 - Layered subsurface
 - 2-D local trench
 - Fault Zone
- 4 Towards 3D viscoelastic FWI of 3D 9-C field data
- 5 Summary

2D elastic Full Waveform Inversion (FWI)

2D elastic FWI: joint inversion of Vp, Vs, density

2D elastic Full Waveform Inversion (FWI)

2D elastic FWI: joint inversion of Vp, Vs, density

L2-Misfit of normalized seismograms

 $E = \frac{\sum_{i}^{N_s} \sum_{j}^{N_r} |\mathbf{\hat{s}}_{i,j} - \mathbf{\hat{d}}_{i,j}|^2}{N_s N_r} \qquad \mathbf{\hat{d}}_{i,j} = \mathbf{d}_{i,j} / |\mathbf{d}_{i,j}| \text{ inormalized observed seismograms}} \\ \mathbf{\hat{s}}_{i,j} = \mathbf{s}_{i,j} / |\mathbf{s}_{i,j}| \text{ inormalized synthetic seismograms}}$

2D elastic Full Waveform Inversion (FWI)

2D elastic FWI: joint inversion of Vp, Vs, density

L2-Misfit of normalized seismograms

 $E = \frac{\sum_{i}^{N_s} \sum_{j}^{N_r} |\mathbf{\hat{s}}_{i,j} - \mathbf{\hat{d}}_{i,j}|^2}{N_s N_r} \qquad \mathbf{\hat{d}}_{i,j} = \mathbf{d}_{i,j} / |\mathbf{d}_{i,j}| \text{ inormalized observed seismograms}} \\ \mathbf{\hat{s}}_{i,j} = \mathbf{s}_{i,j} / |\mathbf{s}_{i,j}| \text{ inormalized synthetic seismograms}}$

- Conjugate gradient method or L-BFGS method for model update
- Gradient calculation with the <u>adjoint state method</u>
- 2D viscoelastic Finite Difference time domain modeling
- Implementation of viscoelastic damping by a generalized Standard Linear Solid (GSLS)

Adjoint State Method

Outline

- 1 Introduction
- 2 Methodology
 - FD Simulation
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation
- 3 2D Field data applications
 - Layered subsurface
 - 2-D local trench
 - Fault Zone
- 4 Towards 3D viscoelastic FWI of 3D 9-C field data
- 5 Summary

Geometrical spreading in homogenous acoustic medium

Geometrical spreading in homogenous acoustic medium

Geometrical spreading in homogenous acoustic medium

Correction

(Forbriger et al., 2014)

Synthetic Test of 2D/3D-Transformation

after correction 80 E location Profile 0 0.3 0.4 time / s

- works surprisingly well for shallow seismic wave fields
- single-trace transformation
- applicable also in case of lateral heterogeneity

line source seismograms
corrected point source seismograms

(Schäfer et al., 2014)

Outline

- 1 Introduction
- 2 Methodology
 - FD Simulation
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation
- 3 2D Field data applications
 - Layered subsurface
 - 2-D local trench
 - Fault Zone
- 4 Towards 3D viscoelastic FWI of 3D 9-C field data
- 5 Summary

Effects of Attenuation

- 1. Amplitude decay with distance
- 2. Loss of high frequencies with distance
- 3. Dispersion

- 1. Amplitude decay with distance
- 2. Loss of high frequencies with distance
- 3. Dispersion

1. Amplitude decay with distance → misfit definition

- 2. Loss of high frequencies with distance
- 3. Dispersion

- 1. Amplitude decay with distance
- Loss of high frequencies with distance → source signal inversion

Stabilized deconvolution in the frequency domain

The source wavelet correction filter acts as a low-pass-filter

(Groos et al., 2014)

- 1. Amplitude decay with distance
- 2. Loss of high frequencies with distance
- 3. Dispersion

Viscoelastic forward modelling

Synthetic reconstruction tests are successful

Pre-processing

- 1. Geometrical spreading correction by single-trace transformation
- 1. Q-estimation

During the elastic FWI

- 1. Use L2-misfit of normailzed seismograms
- 2. Source wavelet inversion
- 3. Viscoelastic forward modelling

(Groos et al., 2014)

Outline

- 1 Introduction
- 2 Methodology
 - FD Simulation
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation

3 2D Field data applications

- Layered subsurface
- 2-D local trench
- Fault Zone
- 4 Towards 3D viscoelastic FWI of 3D 9-C field data
- 5 Summary

Field data: 1-D case

- Glider airfield near Karlsruhe (Germany)
- Acquisition
 - linear profile
 - vertical geophones every 1m
 - hammer blows every 2m

1-D case: Field data

Multiplication with an offset dependent factor (r/1m)^{1.7} 30 Shot Ε offset / 20 10 Shot 0.1 0.2 0.3 0.4 0 time / s

72

t:38-

13

1-D case: Field data

Multiplication with an offset dependent factor (r/1m)^{1.7} 30 Shot 35 t:1 Ε M offset / 20 <u>___</u> Shot 72 10 t:38[.] Μ ~ Shot 0.1 0.2 0.3 0.4 ()time / s

Initial 1D-model

- derived by an inversion of first arrival travel times (v_p) and Fourier-Bessel expansion coefficients (v_s)
 - fluviatile sediments (gravel and sand)
 - ground water table in 6.9 m depth

1-D case: Preprocessing

- 1. 2D/3D geometrical spreading correction
- 2. Estimation of quality factor: $Q_s = Q_p = 15$

Total computation time: 9 h on 16 CPUs

(Groos, 2013)

1-D case: inversion result

1-D case: inversion result

1-D case: common offset gather (20.5 m)

Field data

(Groos et al., 2017)

1-D case: common offset gather (20.5 m)

1D (initial) model Field data

(Groos et al., 2017)

1-D case: common offset gather (20.5 m) 1D (initial) model Field data 2D (FWI) model 09 000 00 Ε Ε profile profile Ω 40 40 along 40 along σ position position 0 posi Shot Shot -20 Shot 20 20 0.2 0 0.1 0 0 0.1 0.2 0.3 0 0.1 0.2 0.3 time / s time / s time / s

(Groos et al., 2017)

1-D case: common offset gather (20.5 m) 1D (initial) model 2D (FWI) model Field data 09 000 00 Ε Ε profile profile Ω 40 40 along 40 along σ position position position Shot Shot 20 Shot 20 20 Ω 0.1 0.2 0 0 0.1 0.2 0.3 0 0.1 0.2 0.3 time / s time / s time / s

2-D FWI model explains lateral variations

Outline

- 1 Introduction
- 2 Methodology
 - FD Simulation
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation
- 3 2D Field data applications
 - Layered subsurface
 - 2-D local trench
 - Fault Zone
- 4 Towards 3D viscoelastic FWI of 3D 9-C field data
- 5 Summary

2. Example: Small-scale trench

 Profile crosses known trench "Ettlinger Linie" excavated in the 18th century

(Wittkamp & Bohlen, 2016)

FWI of shallow seismic surface waves

FWI configuration

Multi-stage approach:

- Gradually increasing frequency content: 4 Hz 130 Hz
- Parameter classes: 1.) $v_{\rm S}$ & $v_{\rm P}$, 2.) $v_{\rm S}$ & $v_{\rm P}$ & ρ

Source time function estimation:

- Stabilized deconvolution (Pratt, 1999; Groos et al., 2014)
- Offset range: 5 m 10 m
- **Optimization:** L-BFGS and subsequently CG

FWI studies:

- A) Individual Love wave FWI
- B) Individual Rayleigh wave FWI
- C) Simultaneous joint FWI

Initial model

- S-wave velocity: Educated guess by dispersion spectra
- P-wave velocity: P-wave travel time analysis
- **Density:** Gardner's relation from the P-wave velocity
- Attenuation: Q = 15 by grid-search

⇒ Predicts all main phases of the recorded wave field (Wittkamp & Bohlen, 2016)

FWI of Love waves

FWI of Rayleigh waves

Joint FWI of Rayleigh and Love waves

Comparison of S-wave velocity models

FWI of shallow seismic surface waves

Outline

- 1 Introduction
- 2 Methodology
 - FD Simulation
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation
- 3 2D Field data applications
 - Layered subsurface
 - 2-D local trench
 - Fault Zone
- 4 Towards 3D viscoelastic FWI of 3D 9-C field data
- 5 Summary

3. Example: Fault Zone

- 2D structure across fault at the southern rim of the Taunus near Frankfurt (Main), Germany
- NW: sericite-gneiss (fast > 300m/s)
- SE: sediments (slow < 300 m/s)
- 4 linear profiles
 - Vertical geophones every 1m
 - Hammer blows every 4m
- Geophysical measurements show small lateral variations parallel to the fault

(Schäfer, 2014)

3. Example: Fault Zone

- 2D structure across fault at the southern rim of the Taunus near Frankfurt (Main), Germany
- NW: sericite-gneiss (fast > 300m/s)
- SE: sediments (slow < 300 m/s)
- 4 linear profiles
 - Vertical geophones every 1m
 - Hammer blows every 4m
- Geophysical measurements show small lateral variations parallel to the fault

(Schäfer, 2014)

FWI of shallow seismic surface waves

FWI of shallow seismic surface waves

FWI of shallow seismic surface waves

Slowness-frequeny spectra

Field data

Slowness-frequeny spectrum

Starting model

Outline

- 1 Introduction
- 2 Methodology
 - FD Simulation
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation
- 3 2D Field data applications
 - Layered subsurface
 - 2-D local trench
 - Fault Zone

4 Towards 3D viscoelastic FWI of 3D 9-C field data

5 Summary

9-C Acquisition

Airfield Rheinstetten

3-C Galperin-Source

3-C Geophone

Outline

- 1 Introduction
- 2 Methodology
 - FD Simulation
 - Elastic FWI
 - Geometrical spreading correction
 - Attenuation
- 3 2D Field data applications
 - Layered subsurface
 - 2-D local trench
 - Fault Zone
- 4 Towards 3D viscoelastic FWI of 3D 9-C field data
- 5 Summary

Summary

- 2-D elastic FWI is applicable to field data and can infer lateral variations of Vs
- Pre-processing:
 - geometrical spreading correction
 - a priori Q-estimation
- Elastic FWI
 - misfit of normailzed seismograms
 - source signal inversion
 - viscoelastic forward modelling
- Outlook
 - Inversion of attenuation
 - 3-D elastic FWI

Thank you for your attention!

References

• Field data applications

- Schäfer, M.: Application of full-waveform inversion to shallow-seismic Rayleigh waves on 2D structures. Dissertation, Karlsruher Institut für Technologie, 2014.
- Groos, L.: <u>2D full waveform inversion of shallow seismic Rayleigh waves</u>. Dissertation, Karlsruher Institut für Technologie, 2013.
- L. Groos, M. Schäfer, T. Forbriger, T. Bohlen. Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves. Geophysics 82(2), R109-R117, 2017.
- F. Wittkamp, T. Bohlen. Field Data Application of Individual and Joint 2-D Elastic Full Waveform Inversion of Rayleigh and Love Waves. Conference: Near Surface Geoscience 2016.

• Attenuation

 L. Groos, M. Schäfer, T. Forbriger, T. Bohlen. The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves, Geophysics, Geophysics 79(6):R247-R261, 2014.

• Spreading correction

- T. Forbriger, L. Groos, M. Schäfer, Line source simulation for shallow seismic field data. Part 1: Theoretical background. Geophysical Journal International, 2014.
- M. Schäfer, L. Groos, T. Forbriger, T. Bohlen, Line-source simulation for shallow-seismic data. Part 2: Full-waveform inversion – a 2D case study. Geophysical Journal International, 2014.