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Goals of FWI
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Find all earth models that predict all signals by full wave modelling !

State of the art: Find one numerical model that predicts selected signals
at low frequencies by full wave modelling.
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Find all earth models that predict all signals by full wave modelling !

State of the art: Find one numerical model that predicts selected signals
at low frequencies by full wave modelling.
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Goals of FWI A“(IT

Karlsruhe Institute of Technology

Find all earth models that predict all signals by full wave modelling !

State of the art: Find one numerical model that predicts selected signals
at low frequencies by full wave modelling.

© Improved resolution: ~ 4 ©

© Multi-parameter reconstruction:
© P-wave velocity ©
O S-wave velocity ©?

observed  p_yoauec © Attenuation ©®?

S-waves © Anisotropy ©?

yrinetic  Surface waves O Density ®

© Improved petrophysical characterization
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Elastic wave propagation is complex

Karlsruhe Institute of Technology

Observed seismograms contain signals of P-waves, S-waves, surface waves, mode

conversions,...
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Applications of FWI

Karlsruhe Institute of Technology

In recent 20 years FWI has been applied sucessfully to different wave types and a

broad range of spatial scales covering 9 orders of magnitude
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FWI: iterative data fitting procedure
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[ Initial model mg ]

[ Field data d ]
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FWI: iterative data fitting procedure
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FWI: iterative data fitting procedure
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KIT

FWI: iterative data fitting procedure
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FWI: iterative data fitting procedure
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FWI: iterative data fitting procedure
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FWI: iterative data fitting procedure e ot

[ Field data d ]—»[ Synthetic data d’ ] [ Gradient: & ]
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FWI: iterative data fitting procedure e ot

[ Field data d ]—»[ Synthetic data d’ ] [ Gradient: & ]
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FWI: iterative data fitting procedure

Karlsruhe Institute of Technology

[ Initial model mg

[ Field data d
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Challenges of FWI (1/6)

Karlsruhe Institute of Technology

Mitigate non-linearities by multi-scale approach

@ we need sufficient low wave numbers in the initial model or the observed data

Low wave numbers in model or data...

... to find global minimum by multi—scale FWI
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Challenges of FWI (2/6)

Suitable misfit definition IS aaia
09¢0e8p0°
1

@ to measure the misfit of the relevant o5
signals

@ Normalized L2, envelope, optimal
transport,...

@ defines the adjoint sources

@ tradeoff between robustness (against 01|25 M R
noise, cycle skipping) and resolution N
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Challenges of FWI (3/6)

Appropriate physics for wave propagation
@ to model the relevant signals

@ multi-parameter reconstruction

@ consider forward and adjoint equations

Acoustic Elastic Visco—elastic

oy o
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Computational requirements
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Challenges of FWI (4/6)

Numerical solution and space discretization

@ Finite-Differences, Spectral elements
® Boundary condition (free surface topography is challenge with FD)

FD: Cartesian grid FD: Stretched grid Specfem: Triangular
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Challenges of FWI (5/6)

Karlsruhe Institute of Technology

Optimization method

@ efficient calculation of gradients by the adjoint method

B available methods: steepest-descent, conjugate gradient, L-BFGS, GauB3-Newton,
Truncated Newton etc.

® consider global strategy if number of parameters is small (uncertainty estimation)
Gradient—based (local)

z

Global

0
optimal X
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Challenges of FWI (6/6)

Karlsruhe Institute of Technology

High Performance Computing

@ Efficient forward and adjoint simulation on heterogeneous architectures (CPU/GPU)

1069 ing time for vi lastic FWI (P= 1 TFLOPS)
—— 2D FWI
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Scattering Series and Born approximation

We use a linear relation between perturbations in the model and data space. This is called
the Born approximation. It is the first linear term of a scattering series. We will derive the
Born approximation for the acoustic wave equation. We define the model parameter

m(x) = (1)

and split it up into

m(x) = mo(x) +emq(x), (2)
where my(x) is the background model and emy (x) a small perturbation of this model.
We do the same for the data u(x), splitting it up into

u(x) = up(x) + use(x), (3)
where up(x) is the background wavefield (propagating in model mg(x)) and usc(x) is the
scattered wavefield produced by my(x). O Broac
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Wave equations

We now have two wave equations:
a Up

Mo—=5 — Aug = f(x,t) background wavefield
2
msa —Au=f(x1) total wavefield
Subtracting equation (4) from (5) yields
22u 82u0
< —Au+Aug =
m 2 Mo u—+ Aug 0
0%u 0?
< (mo +sm1)ﬁ — moﬁ(u —Us) —A(u—uwp) = 0
02 Use d2u
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Solutions in terms of Greens functions A\‘(IT

In the following we will describe solutions of the wave equations using so-called Greens
functions. We first briefly describe the concept and properties of these functions.

Let us consider the scalar acoustic wave equation of the form
> A(x)A| u(x, t) = f(x, t) 7)
ot?

with u(x,0) = 3¥(x,0) = 0. uis the pressure, c the sound velocity and f the source
function.

3
Note that x denotes a space vector x € IR° and A = ax2 ax2 + ax2

=] = roac
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Solutions in terms of Greens functions

The Green’s function G(x, y, t) of the wave equation is its impulse response, which means
it is the solution of the equation with a delta-function as source function:

82
[81‘2 - c2(x)Ax] G(x,y,t) = d(x —y)ot (8)

The source function describes a delta-impulse at the location x = y and at the time t = 0.
The Green'’s function depends on the receiver position x, the source position y and the
time t.

If we know the Green’s function, we can calculate the pressure field for any arbitrary
source function by convolving the Green’s function with the source function and integrating
over the whole model space:

t
u(x,t) = /0 /11{3 G(x,y,t—s)f(y,s) dy ds 9)
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Solutions in terms of Greens functions
The solution of equation (6)
0% Use 9°u
mo 2 Ausc = —:3m1a—t2
can thus be found by convolving the Green’s function with the source term
t %u
Usc(X, t) :/0 /Rs Go(x,y, t— s)(—sm1ﬁ(y, s)) dy ds (10)

It has to be considered, that the Green’s function depends on the respective model. In this
case, the Green’s function Gy for the background model mg is used.
In the following, we will use a shorter notation for the space-time integral by introducing an
operator G that replaces the convolution and the space integral. Thus, equation (10) is
written as
. 0%u
Use = —8G0m1 32 =UuU—U 5 Q] 1%&0
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Scattering operators

We obtain the solution for the total wavefield
%u

o2

This equation gives an implicit relation for the wavefield u and is called the
Lippmann-Schwinger equation. We rearrange equation 12 and use operators
62

or

u = ug — eGomy

|:7—|—€Gom1 :|U = Uy

-
&S U = |:/+€Gom1at2:| Up

scattering operator

with the identity operator 1. The scattering operator describes the relation between the

background field ug and the total field wu.
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Scattering series

For an operator A we can develop the expression [1+ A]~! in a Neumann series
(Bron&tejn 2015):
M+A ' =T-A+A - A+ . (14)

With A = eGymy %, equation (13) can be written as a series, which is called the Born
series:

2 . 82 . 82
ﬁ)u0+€2<60m1 )(Gom1aft2

P12 )uo+... (15)
= Up + €Uy —l—ezuz + ...

u=uy— E(Gol’m

82u0
at2 )
order term u, = (Gom1 atz)(GO’m at2)“0 corresponds to double scattering, meaning that

one wave is scattered at two different points on its travel path.

The first order term vy = — Gomy corresponds to single scattering, while the second
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Born approximation A\‘(IT
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The first order approximation u = g + €uy, that is considering only single scattering, is
called the Born approximation and will be used in the following. With this approximation,
the scattered wavefield is given by usc = euy. Inserting this in equation (6) results in

d2¢euy 9% (up + euy)
Moz — Aeuy = —emy —
82U1 82u0
& my—— — AUy = —my—= 16
05 U 15 (16)

where we neglected the term of the order €. This is a wave equation for the single
scattered field. In the source term the background wavefield ug appears, so the scattered
wavefield is induced by the background wavefield scattered at the model perturbations mj.
This secondary scattered wavefield is then propagating in the background model mg. The
background wavefield ug can be calculated with equation (4).

o> «Zroac
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Born approximation A\‘(IT

Karlsruhe Institute of Technology

Xs f(x,t) Xr

us

em,

Figure: Principle of the scattering theory: The background wavefield ug induced by source f is
scattered at the model perturbations emy in point y, producing the scattered wavefield uy.
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Born approximation

Figure 1 shows the principle of the scattering theory: The source f(x, t) is initiating the
background wavefield ug. At model perturbations emy, the background field is scattered,
which leads to the additional wavefield u;. Because we have different positions of sources
and receivers, the Green'’s function differs for both parts of the wavefield. For the
background field, we use the notation Go = G(y, xs, t), and for the scattered field with the
secondary source G{, = G(x;, y, t). Thus, the wavefields are calculated with the Green’s
functions as follows:

up = Gof (17)
., 0%y 92
uy = —Ghmy ato = 1GOBt2(GOf) (18)
=] Erva™>
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Frechet-derivative

With equation (18), we finally have a linear relation between the scattered wavefield uy and
the model perturbations my. For this linear function, it is easy to calculate the derivative of
the wavefield uy with respect to the model parameters my, which is called the

Frechet-derivative: 5 52
U4 A N
om; Goatz(Go ) (19)

If we transform the Frechet-derivative into the frequency domain, the second partial
derivative % will be replaced by —w?, so that we get

aU1 _ 251 5
M =w gogof, (20)

where Qo denotes the Fourier transform of the operator Go. This derivative will be used for

the inversion as described in the following section. e

o =
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Summary of first lecture A\‘(IT
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@ FWI in its simpelst form is a least-squares iterative data fitting procedure that can be
applied on a broad range of spatial scales

@ The aim of FWI to exploit the full information content of seismic data to invert
multi-parameter models is a challenging task, e.g.
@& |ocal minima of the misfit function
@ high computational efforts
@ FWI is based on linear perturbation theory, i.e. the Born approximation
® only single scattering is assumed
@ allows efficient calculation of the gradient (next lecture)
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