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Goals of FWI
Find all earth models that predict all signals by full wave modelling !

State of the art: Find one numerical model that predicts selected signals
at low frequencies by full wave modelling.

S−waves

P−waves

Surface waves

Benefits

1 Improved resolution: ≈ λ
2 �

2 Multi-parameter reconstruction:
a P-wave velocity �
b S-wave velocity À?
c Attenuation À?
d Anisotropy À?
e Density �

3 Improved petrophysical characterization
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Elastic wave propagation is complex

Observed seismograms contain signals of P-waves, S-waves, surface waves, mode
conversions,...

Click on frame to play movie

6 | 32 Bohlen – Full Waveform Inversion



Applications of FWI

In recent 20 years FWI has been applied sucessfully to different wave types and a
broad range of spatial scales covering 9 orders of magnitude
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FWI: iterative data fitting procedure

Selection of misfit, shots, frequency range, time window

Initial model m0

Forward modelling Optimization mi+1

Field data d

Synthetic data d’ Gradient: ∂E
∂m

Misfit E(m) Adjoint modelling
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Challenges of FWI (1/6)

Mitigate non-linearities by multi-scale approach

we need sufficient low wave numbers in the initial model or the observed data
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Challenges of FWI (2/6)

Suitable misfit definition

to measure the misfit of the relevant
signals

Normalized L2, envelope, optimal
transport,...

defines the adjoint sources

tradeoff between robustness (against
noise, cycle skipping) and resolution
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Challenges of FWI (3/6)

Appropriate physics for wave propagation

to model the relevant signals

multi-parameter reconstruction

consider forward and adjoint equations

Computational requirements

Surface waves
Attenuation

P−waves, S−waves
Surface waves

P−waves

Acoustic Elastic Visco−elastic

P−waves, S−waves
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Challenges of FWI (4/6)

Numerical solution and space discretization

Finite-Differences, Spectral elements

Boundary condition (free surface topography is challenge with FD)

FD: Cartesian grid FD: Stretched grid Specfem: Triangular

(?)

14 | 32 Bohlen – Full Waveform Inversion



Challenges of FWI (5/6)

Optimization method

efficient calculation of gradients by the adjoint method

available methods: steepest-descent, conjugate gradient, L-BFGS, Gauß-Newton,
Truncated Newton etc.

consider global strategy if number of parameters is small (uncertainty estimation)

Gradient−based (local) Global
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Challenges of FWI (6/6)

High Performance Computing

Efficient forward and adjoint simulation on heterogeneous architectures (CPU/GPU)
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Scattering Series and Born approximation

We use a linear relation between perturbations in the model and data space. This is called
the Born approximation. It is the first linear term of a scattering series. We will derive the
Born approximation for the acoustic wave equation. We define the model parameter

m(x) :=
1

c2(x)
, (1)

and split it up into
m(x) = m0(x) + εm1(x), (2)

where m0(x) is the background model and εm1(x) a small perturbation of this model.
We do the same for the data u(x), splitting it up into

u(x) = u0(x) + usc(x), (3)

where u0(x) is the background wavefield (propagating in model m0(x)) and usc(x) is the
scattered wavefield produced by m1(x).
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Wave equations

We now have two wave equations:

m0
∂2u0

∂t2 − ∆u0 = f (x , t) background wavefield (4)

m
∂2u
∂t2 − ∆u = f (x , t) total wavefield (5)

Subtracting equation (4) from (5) yields

m
∂2u
∂t2 −m0

∂2u0

∂t2 − ∆u + ∆u0 = 0

⇔ (m0 + εm1)
∂2u
∂t2 −m0

∂2

∂t2 (u − usc)− ∆(u − u0) = 0

⇔ m0
∂2usc

∂t2 − ∆usc = −εm1
∂2u
∂t2 (6)
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Solutions in terms of Greens functions

In the following we will describe solutions of the wave equations using so-called Greens
functions. We first briefly describe the concept and properties of these functions.

Let us consider the scalar acoustic wave equation of the form[
∂2

∂t2 − c2(x)∆
]

u(x , t) = f (x , t) (7)

with u(x , 0) = ∂u
∂t (x , 0) = 0. u is the pressure, c the sound velocity and f the source

function.

Note that x denotes a space vector x ∈ R3 and ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
.
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Solutions in terms of Greens functions

The Green’s function G(x , y , t) of the wave equation is its impulse response, which means
it is the solution of the equation with a delta-function as source function:[

∂2

∂t2 − c2(x)∆x

]
G(x , y , t) = δ(x − y)δt (8)

The source function describes a delta-impulse at the location x = y and at the time t = 0.
The Green’s function depends on the receiver position x , the source position y and the
time t .
If we know the Green’s function, we can calculate the pressure field for any arbitrary
source function by convolving the Green’s function with the source function and integrating
over the whole model space:

u(x , t) =
∫ t

0

∫
R3

G(x , y , t − s)f (y , s) dy ds (9)
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Solutions in terms of Greens functions

The solution of equation (6)

m0
∂2usc

∂t2 − ∆usc = −εm1
∂2u
∂t2

can thus be found by convolving the Green’s function with the source term

usc(x , t) =
∫ t

0

∫
R3

G0(x , y , t − s)(−εm1
∂2u
∂t2 (y , s)) dy ds (10)

It has to be considered, that the Green’s function depends on the respective model. In this
case, the Green’s function G0 for the background model m0 is used.
In the following, we will use a shorter notation for the space-time integral by introducing an
operator Ĝ0 that replaces the convolution and the space integral. Thus, equation (10) is
written as

usc = −εĜ0m1
∂2u
∂t2 = u − u0 (11)
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Scattering operators
We obtain the solution for the total wavefield

u = u0 − εĜ0m1
∂2u
∂t2 (12)

This equation gives an implicit relation for the wavefield u and is called the
Lippmann-Schwinger equation. We rearrange equation 12 and use operators[

Î + εĜ0m1
∂2

∂t2

]
u = u0

⇔ u =

[
Î + εĜ0m1

∂2

∂t2

]−1

︸ ︷︷ ︸
scattering operator

u0 (13)

with the identity operator Î. The scattering operator describes the relation between the
background field u0 and the total field u.
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Scattering series

For an operator Â we can develop the expression [Î + Â]−1 in a Neumann series
(Bronštejn 2015):

[Î + Â]−1 = Î − Â + Â2 − Â3 + ... (14)

With Â = εĜ0m1
∂2

∂t2 , equation (13) can be written as a series, which is called the Born
series:

u = u0 − ε(Ĝ0m1
∂2

∂t2 )u0 + ε2(Ĝ0m1
∂2

∂t2 )(Ĝ0m1
∂2

∂t2 )u0 + ... (15)

= u0 + εu1 + ε2u2 + ...

The first order term u1 = −Ĝ0m1
∂2u0
∂t2 , corresponds to single scattering, while the second

order term u2 = (Ĝ0m1
∂2

∂t2 )(Ĝ0m1
∂2

∂t2 )u0 corresponds to double scattering, meaning that
one wave is scattered at two different points on its travel path.
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Born approximation

The first order approximation u = u0 + εu1, that is considering only single scattering, is
called the Born approximation and will be used in the following. With this approximation,
the scattered wavefield is given by usc = εu1. Inserting this in equation (6) results in

m0
∂2εu1

∂t2 − ∆εu1 = −εm1
∂2(u0 + εu1)

∂t2

⇔ m0
∂2u1

∂t2 − ∆u1 = −m1
∂2u0

∂t2 (16)

where we neglected the term of the order ε2. This is a wave equation for the single
scattered field. In the source term the background wavefield u0 appears, so the scattered
wavefield is induced by the background wavefield scattered at the model perturbations m1.
This secondary scattered wavefield is then propagating in the background model m0. The
background wavefield u0 can be calculated with equation (4).
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Born approximation

✱ ∇
xs xrf(x,t)

y

u0

u1

εm1

m0

Figure: Principle of the scattering theory: The background wavefield u0 induced by source f is
scattered at the model perturbations εm1 in point y , producing the scattered wavefield u1.
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Born approximation

Figure 1 shows the principle of the scattering theory: The source f (x , t) is initiating the
background wavefield u0. At model perturbations εm1, the background field is scattered,
which leads to the additional wavefield u1. Because we have different positions of sources
and receivers, the Green’s function differs for both parts of the wavefield. For the
background field, we use the notation Ĝ0 = G(y , xs, t), and for the scattered field with the
secondary source Ĝ′0 = G(xr , y , t). Thus, the wavefields are calculated with the Green’s
functions as follows:

u0 = Ĝ0f (17)

u1 = −Ĝ′0m1
∂2u0

∂t2 = −m1Ĝ′0
∂2

∂t2 (Ĝ0f ) (18)
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Frechet-derivative

With equation (18), we finally have a linear relation between the scattered wavefield u1 and
the model perturbations m1. For this linear function, it is easy to calculate the derivative of
the wavefield u1 with respect to the model parameters m1, which is called the
Frechet-derivative:

∂u1

∂m1
= −Ĝ′0

∂2

∂t2 (Ĝ0f ) (19)

If we transform the Frechet-derivative into the frequency domain, the second partial
derivative ∂2

∂t2 will be replaced by −ω2, so that we get

∂u1

∂m1
= ω2Ĝ ′0Ĝ0f , (20)

where Ĝ0 denotes the Fourier transform of the operator Ĝ0. This derivative will be used for
the inversion as described in the following section.

29 | 32 Bohlen – Full Waveform Inversion



Summary of first lecture

FWI in its simpelst form is a least-squares iterative data fitting procedure that can be
applied on a broad range of spatial scales
The aim of FWI to exploit the full information content of seismic data to invert
multi-parameter models is a challenging task, e.g.

local minima of the misfit function
high computational efforts

FWI is based on linear perturbation theory, i.e. the Born approximation
only single scattering is assumed
allows efficient calculation of the gradient (next lecture)
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Thank you for
your attention

k Thomas.Bohlen@kit.edu
http://www.gpi.kit.edu/

Published under license.
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