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FWI Procedure
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Summary of previous lecture

In the previous lecture we applied perturbation approach to model and data:

m = m0 + εm1, u(x) = u0 + usc (1)

We developed usc in a scattering series

usc = εu1 + ε2u2 + ... (2)

We apply the Born approximation which assumes
1 ε� 1: weak model perturbations m1 and weak scattered field u1

2 usc = εu1: single scattering only
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Summary of previous lecture

Using the Born approximation we derived the following wave equations.

Background wavefield: m0
∂2u0

∂t2 − ∆u0 = f (xs, t) or u0(y) = G(y , xs, t)f (xs, t) (3)

Scattered wavefield: m0
∂2u1

∂t2 − ∆u1 = −m1
∂2u0

∂t2 or u1(xr ) = −G(xr , y , t)m1
∂2u0

∂t2

(4)

6 | 35 Bohlen – Full Waveform Inversion



Born approximation

✱ ∇
xs xrf(x,t)

y

u0

u1

εm1

m0

Figure: Born approximation: The arbitrary strong and complex background wavefield u0 induced by
source f is scattered only once at the weak model perturbations εm1 in point y , producing the weak
single scattered wavefield u1.
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Born approximation

We insert 4 into 3

u0(y , t) = G(y , xs, t)f (xs, t) (5)

u1(xr , t) = −G(xr , y , t)m1
∂2u0

∂t2 = −m1G(xr , y , t)
∂2

∂t2 (G(y , xs, t)f (xs, t)) (6)

This is a linear relation between u1 and m1. The Frechet-derivatives (sensitivities):

∂u1(xr , t)
∂m1

= G(xr , y , t)
∂2

∂t2 (G(y , xs, t)f (xs, t)) (7)

They describe the change of scattered field u1(xr , t) due to a model perturbation m1 at y .
In the frequency domain we can write

∂u1(xr ,ω)

∂m1
= −ω2G(xr , y ,ω)G(y , xs,ω)f (xs,ω) (8)
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Outlook

1 In the following we define the misfit function E(ω,m) in the frequency domain.

2 We calculate the gradient ∂E
∂m by making use of the derived Frechet-derivatives, i.e. the

Bornapproximation.
3 We will find an efficient procedure to calculate ∂E

∂m .
4 We will transform the equation back into the time-domain.
5 We show one toy-example to illustrate the application.
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Inversion of the single scattered wavefield

We define the misfit function in the frequency domain as

E =
1
2

∫
ω
|u1|2 dω (9)

Note that we used u1 ∈ C, i.e. the minimization of E aims to reduce the single scattered
wavefield described by the Born approximation.
Our aim is to apply the steepest descent method:

m(n+1) = m(n) − α
∂E
∂m
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Inversion of the single scattered wavefield

We calculate the gradient:

∂E
∂m

=
1
2

∂

∂m

∫
ω
|u1,R + iu1,I |2 dω (10)

The partial derivative of the complex function is calculated as follows:

∂

∂m
|u1,R + iu1,I |2 =

∂

∂m
(u2

1,R + u2
1,I) = 2

(
u1,R

∂u1,R

∂m
+ u1,I

∂u1,I

∂m

)
= 2<

[(
∂u1,R

∂m
+ i

∂u1,I

∂m

)
(u1,R − iu1,I)

]
= 2<

[
∂u1

∂m
u∗1

]
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Gradient

Inserting this in equation (10) yields

∂E
∂m

=
∫

ω
<
[

∂u1

∂m
u∗1

]
dω (11)

We now use the Frechet-derivative

∂u1(xr ,ω)

∂m1
= −ω2G(xr , y ,ω)G(y , xs,ω)f (xs,ω) (12)

leading to the misfit gradient

∂E
∂m

(y) =
∫

ω
<
[
−ω2G(xr , y ,ω)G(y , xs,ω)f (xs,ω)u∗1

]
dω (13)
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Gradient

We re-arrange:

∂E
∂m

(y) = −ω2
∫

ω
< [(G(y , xs,ω)f (xs,ω)) (G(xr , y ,ω)u∗1)] dω (14)

Interpretation:
1 The first term G(y , xs,ω)f (xs,ω) can be interpreted as forward wavefield from source

point xs to the image point y .
2 The second term G(xr , y ,ω)u∗1 can be interpreted as backward residual wavefield from

the receiver point xr to the image point y .
3 The integral describes a zero-lag cross-correlation.
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1. Forward Wavefield

Remember that the term G(y , xs,ω)f (xs,ω) actually describes solutions of the wave
equation in the time-domain

m0
∂2uf

∂t2 − ∆uf = f (xs, t) (15)

The forward wavefield uf is excited by f (xs, t) and propagates in the background model m0.
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2. Backward residual wavefield: G(xr , y ,ω)u∗1

1 The scattered field is defined as u1 = u − u0. u1 can thus be interpreted as the residual
field or missing wavefield not (yet) described by our background model.

2 The complex conjugation u∗1 = u1,R − iu1,I implies a time reversal. Consider the
Fourier-domain representation

u1(ω) = |u1(ω)|ei(ωt+ϕ(ω))

where |u1(ω)| and ϕ(ω) denote the amplitude and phase spectrum, respectively. We
see that

i → −i ⇔ t → −t

3 The general reciprocity relation of Greens-functions G(xr , y ,ω) = G(y , xr ,ω). This
implies that the residual wavefield can be excited at the receiver location xr .
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2. Backward residual wavefield: G(xr , y ,ω)u∗1

4 The term G(y , xr ,ω)u∗1 thus corresponds to the wave equation in the time-domain

m0
∂2ub

∂t2 − ∆ub = u1(xr ,−t) (16)

The backward wavefield ub is excited by u1(xr ,−t).

5 The wave equation itself is insensitive to a time reversal t → −t as second order time
derivatives ∂

∂t2 are applied, i.e. a time reversal will not change second order time
derivatives. A time reversal of the source signal thus produces a wavefield that
propagates backwards in time.
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3. zero-lag cross-correlation

The frequency domain representation of the gradient

∂E
∂m

(y) = −ω2
∫

ω
< [(G(y , xs,ω)f (xs,ω)) (G(xr , y ,ω)u∗1)] dω

describes a zero-lag crosscorrelation of the forward and backward wavefield.
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Cross-correlation

In order to show the analogy we review the definition of cross-correlation between two real
functions x(t) and y(t) in the time and frequency domain:

z(τ) = (x(t)× y(t))(τ) =
∫ ∞

−∞
x(t)y(t + τ)dt

In the frequency domain a cross-correlation can be calculated via

Z (ω) = X ∗(ω)Y (ω)

where Z (ω),X (ω),Y (ω) are the Fourier transformations of z(t), x(t), y(t), respectively.
X ∗(ω) denotes complex conjugation. The inverse Fourier transformation is

z(τ) =
1

2π

∫ ∞

−∞
Z (ω)eiωτdω =

1
2π

∫ ∞

−∞
X ∗(ω)Y (ω)eiωτdω
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Cross-correlation

The zero-lag cross-correlation for τ = 0 can be written in the frequency domain as

z(τ = 0) =
1

2π

∫ ∞

−∞
X ∗(ω)Y (ω)eiω0dω =

1
2π

∫ ∞

−∞
X ∗(ω)Y (ω)dω

If we compare this with our formula for the gradient

∂E
∂m

(y) = −ω2
∫

ω
< [(G(y , xs,ω)f (xs,ω)) (G(xr , y ,ω)u∗1)] dω

we see that this indeed is similar to a zero-lag cross-correlation. We show later that in the
time-domain the gradient is calculated via

∂E
∂m

(y) =
∂

∂t2

∫
t
(uf (y , t)ub(y , t)) dt (17)
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Illustration of gradient calculation

Geophysical Institute, Department of Physics1

Numerical gradient calculation

observed background scattered

forward 
wave field

gradient

X

backward 
wave field

u u0 u1

uf ub

Figure: Gradient calculation: The gradient is obtained by zero-lag cross-correlation between the
forward and backward wavefields. The forward field is excited by the source. The backward field is
excited by the residuals injected at the receivers.
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Simple example

(Kurzmann 2012)
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Simple example

(Kurzmann 2012)
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Acoustic forward modelling (movie)

(Kurzmann 2012)
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Calculation of residual seismograms and the misfit
function

(Kurzmann 2012)
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Backpropagation (backprojection)(movie)

(Kurzmann 2012)
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Gradient calculation = Imaging condition

(Kurzmann 2012)
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Gradient summation

(Kurzmann 2012)
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Gradient preconditioning and model update

(Kurzmann 2012)
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Iterate until misfit has reached a minimum (movie)

(Kurzmann 2012)
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Summary of lecture

In the following we define the misfit function E(ω,m) in the frequency domain

E =
1
2

∫
ω
|u1|2 dω

We calculated the gradient ∂E
∂m

∂E
∂m

=
∫

ω
<
[

∂u1

∂m
u∗1

]
dω

We insert the Frechet-derivatives in the Bornapproximation and get

∂E
∂m

(y) = −ω2
∫

ω
< [(G(y , xs,ω)f (xs,ω)) (G(xr , y ,ω)u∗1)] dω

which describes a zero-lag cross-correlation between the forward and residual backward
wavefield.
We illustrated the steepest descent FWI in a simple acoustic crosswell experiment.
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